Here's what life science startups were named most promising at the recent Rice Alliance Texas Life Science Forum.. Getty Images

Houston hosted an annual meeting of the minds that included thoughtful discussions, presentations, panels, and startup pitches within the life science industry.

The Texas Life Science Forum, organized and hosted by the Rice Alliance and BioHouston, took place on November 6 at Rice University's Bioscience Research Collaborative. Throughout the day, over 50 life science startups pitched to the audience. At the end of the forum, 10 startups — most of which are based in Houston — were recognized as being the most promising.

Here's what life science startups you should be keeping an eye out for.

Abilitech Medical

abilitech

Photo via abilitechmedical.com

A St. Paul, Minnisota-based medical device company, Abilitech Medical develops assistive technology to Multiple sclerosis, Muscular Dystrophy, Parkinson's and stroke patients. The first product, Alibitech Assist, will be cleared by the FDA in 2020, with other devices to follow in 2022 and 2023.

AgilVax

agilvax

Photo via agilvax.com

Based in Albuquerque, New Mexico, AgilVax is a biopharmaceutical company that works with chemotherapy, checkpoint and KRAS inhibitors to fight various cancers. The company's AX09 is an immunotherapeutic that is headed for human clinical trials in 2020. Another product, M5, is a monoclonal antibody currently in preclinical trials.

Altoida

altoida

Photo via altoida.com

Altoida, based in Houston, has created a medical device that uses artificial intelligence and augmented reality to collect functional and cognitive data in patients to determine their risk Mild Cognitive Impairment from Alzheimer's Disease. The Altoida Neuro Motor Index has been cleared by the FDA and CE and detects cognitive decline with a 94 percent diagnostic accuracy six to 10 years ahead of the onset of symptoms.

ColubrisMX

Photo via Pexels

Houston-based ColubrisMX makes surgical robots specializing in minimally invasive and endoluminal surgeries. The company's team of engineers and surgeons works adjacent to the Texas Medical Center.

Cord Blood Plus

stem cell

Photo via Getty Images

Cord Blood Plus, based in Galveston, is working to commercialize its human umbilical cord blood stem cell technology. The company's primary mission is to use its research and treatment on breast cancer patients undergoing chemotherapy in order to prevent infections, speed up recovery, and shorten hospital stays.

CorInnova

CorInnova

Photo via CorInnova.com

Another Houston company, CorInnova is a medical device company that has developed a cardiac assist device to treat heart failure without many of the consequences from standard treatment. The device is able to self expand and gently compress the heart in sync with the heartbeat.

Mesogen

mesogen

Photo via Mesogen.com

Mesogen, which is based in The Woodlands, is in the business of using a patient's own cells to grow a human kidney for transplant. The tissue engineering technology allows for the creation of a kidney in less than a year with less risk of transplant rejection and a better quality of life over dialysis treatment.

Saranas

Courtesy of Saranas

Houston-based Saranas has created its Early Bird device to more quickly and more accurately detect bleeding in the human body. The company, which underwent successful clinical trials last year, recently received FDA clearance and launched the device in the United States.

Stream Biomedical

stream biomedical

Photo via streambiomedical.com

Stream Biomedical Inc. is tapping into a therapeutic protein that has proven to be neuroprotective and neuroreparative. The Houston company is aiming to apply the treatment in acute stroke cases and later for traumatic brain injury, Alzheimer's, and dementia cases.

VenoStent

Photo via venostent.com

Houston-based VenoStent has created a device that allows a successful stent implementation on the first try. VenoStent's SelfWrap is made from a shape-memory polymer that uses body heat to mold the stent into the vein-artery junction.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

TMC, Memorial Hermann launch partnership to spur new patient care technologies

medtech partnership

Texas Medical Center and Memorial Hermann Health System have launched a new collaboration for developing patient care technology.

Through the partnership, Memorial Hermann employees and physicians will now be able to participate in the TMC Center for Device Innovation (CDI), which will assist them in translating product innovation ideas into working prototypes. The first group of entrepreneurs will pitch their innovations in early 2026, according to a release from TMC.

“Memorial Hermann is excited to launch this new partnership with the TMC CDI,” Ini Ekiko Thomas, vice president of information technology at Memorial Hermann, said in the news release. “As we continue to grow (a) culture of innovation, we look forward to supporting our employees, affiliated physicians and providers in new ways.”

Mentors from Memorial Hermann, TMC Innovation and industry experts with specialties in medicine, regulatory strategy, reimbursement planning and investor readiness will assist with the program. The innovators will also gain access to support systems like product innovation and translation strategy, get dedicated engineering and machinist resources and personal workbench space at the CDI.

“The prototyping facilities and opportunities at TMC are world-class and globally recognized, attracting innovators from around the world to advance their technologies,” Tom Luby, chief innovation officer at TMC Innovation Factor, said in the release.

Memorial Hermann says the partnership will support its innovation hub’s “pilot and scale approach” and hopes that it will extend the hub’s impact in “supporting researchers, clinicians and staff in developing patentable, commercially viable products.”

“We are excited to expand our partnership with Memorial Hermann and open the doors of our Center for Device Innovation to their employees and physicians—already among the best in medical care,” Luby added in the release. “We look forward to seeing what they accomplish next, utilizing our labs and gaining insights from top leaders across our campus.”

Google to invest $40 billion in AI data centers in Texas

Google is investing a huge chunk of money in Texas: According to a release, the company will invest $40 billion on cloud and artificial intelligence (AI) infrastructure, with the development of new data centers in Armstrong and Haskell counties.

The company announced its intentions at a meeting on November 14 attended by federal, state, and local leaders including Gov. Greg Abbott who called it "a Texas-sized investment."

Google will open two new data center campuses in Haskell County and a data center campus in Armstrong County.

Additionally, the first building at the company’s Red Oak campus in Ellis County is now operational. Google is continuing to invest in its existing Midlothian campus and Dallas cloud region, which are part of the company’s global network of 42 cloud regions that deliver high-performance, low-latency services that businesses and organizations use to build and scale their own AI-powered solutions.

Energy demands

Google is committed to responsibly growing its infrastructure by bringing new energy resources onto the grid, paying for costs associated with its operations, and supporting community energy efficiency initiatives.

One of the new Haskell data centers will be co-located with — or built directly alongside — a new solar and battery energy storage plant, creating the first industrial park to be developed through Google’s partnership with Intersect and TPG Rise Climate announced last year.

Google has contracted to add more than 6,200 megawatts (MW) of net new energy generation and capacity to the Texas electricity grid through power purchase agreements (PPAs) with energy developers such as AES Corporation, Enel North America, Intersect, Clearway, ENGIE, SB Energy, Ørsted, and X-Elio.

Water demands

Google’s three new facilities in Armstrong and Haskell counties will use air-cooling technology, limiting water use to site operations like kitchens. The company is also contributing $2.6 million to help Texas Water Trade create and enhance up to 1,000 acres of wetlands along the Trinity-San Jacinto Estuary. Google is also sponsoring a regenerative agriculture program with Indigo Ag in the Dallas-Fort Worth area and an irrigation efficiency project with N-Drip in the Texas High Plains.

In addition to the data centers, Google is committing $7 million in grants to support AI-related initiatives in healthcare, energy, and education across the state. This includes helping CareMessage enhance rural healthcare access; enabling the University of Texas at Austin and Texas Tech University to address energy challenges that will arise with AI, and expanding AI training for Texas educators and students through support to Houston City College.

---

This article originally appeared on CultureMap.com.

TMCi names 11 global startups to latest HealthTech Accelerator cohort

new class

Texas Medical Center Innovation has named 11 medtech startups from around the world to its latest HealthTech Accelerator cohort.

Members of the accelerator's 19th cohort will participate in the six-month program, which kicked off this month. They range from startups developing on-the-go pelvic floor monitoring to 3D-printed craniofacial and orthopedic implants. Each previously participated in TMCi's bootcamp before being selected to join the accelerator. Through the HealthTech Accelerator, founders will work closely with TMC specialists, researchers, top-tier hospital experts and seasoned advisors to help grow their companies and hone their clinical trials, intellectual property, fundraising and more.

“This cohort of startups is tackling some of today’s most pressing clinical challenges, from surgery and respiratory care to diagnostics and women’s health," Tom Luby, chief innovation officer at Texas Medical Center, said in a news release. "At TMC, we bring together the minds behind innovation—entrepreneurs, technology leaders, and strategic partners—to help emerging companies validate, scale, and deliver solutions that make a real difference for patients here and around the world. We look forward to seeing their progress and global impact through the HealthTech Accelerator and the support of our broader ecosystem.”

The 2025 HealthTech Accelerator cohort includes:

  • Houston-based Respiree, which has created an all-in-one cardiopulmonary platform with wearable sensors for respiratory monitoring that uses AI to track breathing patterns and detect early signs of distress
  • College Station-based SageSpectra, which designs an innovative patch system for real-time, remote monitoring of temperature and StO2 for assessing vascular occlusion, infection, and other surgical flap complications
  • Austin-based Dynamic Light, which has developed a non-invasive imaging technology that enables surgeons to visualize blood flow in real-time without the need for traditional dyes
  • Bangkok, Thailand-based OsseoLabs, which develops AI-assisted, 3D-printed patient-specific implants for craniofacial and orthopedic surgeries
  • Sydney, Australia-based Roam Technologies, which has developed a portable oxygen therapy system (JUNO) that provides real-time oxygen delivery optimization for patients with chronic conditions
  • OptiLung, which develops 3D-printed extracorporeal blood oxygenation devices designed to optimize blood flow and reduce complications
  • Bengaluru, India-based Dozee, which has created a smart remote patient monitor platform that uses under-the-mattress bed sensors to capture vital signs through continuous monitoring
  • Montclair, New Jersey-based Endomedix, which has developed a biosurgical fast-acting absorbable hemostat designed to eliminate the risk of paralysis and reoperation due to device swelling
  • Williston, Vermont-based Xander Medical, which has designed a biomechanical innovation that addresses the complications and cost burdens associated with the current methods of removing stripped and broken surgical screws
  • Salt Lake City, Utah-based Freyya, which has developed an on-the-go pelvic floor monitoring and feedback device for people with pelvic floor dysfunction
  • The Netherlands-based Scinvivo, which has developed optical imaging catheters for bladder cancer diagnostics