This week's roundup of Houston innovators includes Chris George of Octopus EV, James Allison of MD Anderson, and Paul Wotton of RBL LLC. Photos courtesy

Editor's note: Every week, I introduce you to a handful of Houston innovators to know recently making headlines with news of innovative technology, investment activity, and more. This week's batch includes a biotech leader, a Nobel laureate, and EV innovator.

Chris George, United States co-lead at Octopus Electric Vehicles

Chris George, United States co-lead at Octopus Electric Vehicles, joins the Houston Innovators Podcast. Photo courtesy of Octopus

Switching from a gas-powered car to an electric one can be a big change, but a Houston-based company has made things a lot easier for its customers.

Octopus Electric Vehicles US, a spinout of United Kingdom-based retail energy provider Octopus Energy, matches its users with their perfect EV lease and sets them up with smart electricity technology for at-home charging.

"We do a couple of really unique things that are not only first of its kind but really innovative," Octopus EV's US Co-Lead Chris George says on the Houston Innovators Podcast, pointing out specifically Octopus Energy's Intelligent Octopus, a smart feature for customers that automates energy usage to lower cost.

"We launched an Intelligent Octopus for EVs service. Instead of operating in a very narrow window — overnight — it operates dynamically," he continues. Read more.

James P. Allison, director of the James P. Allison Institute

MD Anderson's lab led by Nobel laureate James Allison has secured a $5 million donation. Photo courtesy of MD Anderson Cancer Center

The James P. Allison Institute at The University of Texas MD Anderson Cancer Center scored a $5 million gift at its second annual symposium.

On behalf of Mayor John Whitmire, Oct. 10, 2024 was named “James P. Allison Institute Day,” and it was also the day that the TMC3 Collaborative Building in the Texas Medical Center’s Helix Park greeted 900 attendees for the scientific symposium, entitled “Immunotherapy in Space and Time: The Tumor Microenvironment.”

“Spatial biology is a rapidly expanding field that offers tremendous new insights into immunobiology that were not possible just a few short years ago. Understanding how immune cells interact with their neighbors and with tumor cells in space and time will enable us to bring forward new strategies to improve immunotherapy outcomes,” says James P. Allison. “We are proud to host this annual symposium to advance the field, and we are extremely grateful for the support of the Wintermann Foundation to make new breakthroughs possible.” Read more.

Paul Wotton, managing partner of RBL LLC

Established to rapidly build companies based on Rice University's portfolio of over 100 patents, RBL LLC is Rice University's new biotech venture creation studio based in Texas Medical Center Helix Park. RBL comes on the heels of establishing the Rice Biotech Launch Pad, a biotech innovation accelerator that opened last year.

Paul Wotton, executive director of the Rice Biotech Launch Pad, co-founded RBL with his colleagues Omid Veiseh, Rice professor of bioengineering and faculty director of the Rice Biotech Launch Pad; Jacob Robinson, Rice professor of electrical and computer engineering; and Dr. Rima Chakrabarti, a physician scientist and venture capital investor with KdT Ventures.

“This is a pivotal moment for Houston and beyond,” Wotton, who serves as RBL’s managing partner, says in a news release from Rice. “Houston has rapidly emerged as a global life sciences powerhouse, blending cutting-edge research with early clinical applications at Rice and the city’s world-renowned hospital systems." Continue reading.

CellChorus announced that the company, along with The University of Houston, has been awarded up to $2.5 million in funding. Photo via Getty Images

University of Houston-founded company secures $2.5M in NIH grant funding

all in the timing

You could say that the booming success of Houston biotech company CellChorus owes very much to auspicious TIMING. Those six letters stand for Time-lapse Imaging Microscopy In Nanowell Grids, a platform for dynamic single-cell analysis.

This week, CellChorus announced that the company, along with The University of Houston, has been awarded up to $2.5 million in funding from the National Center for Advancing Translational Sciences (NCATS) at the National Institute of Health. A $350,000 Phase I grant is already underway. Once predetermined milestones are achieved, this will lead to a two-year $2.1 million Phase II grant.

The TIMING platform was created by UH Single Cell Lab researchers Navin Varadarajan and Badri Roysam. TIMING generates high-throughput in-vitro assays that quantitatively profile interactions between cells on a large scale, particularly what happens when immune cells confront target cells. This has been especially useful in the realm of immuno-oncology, where it has demonstrated its power in designing novel therapies, selecting lead candidates for clinical trials and evaluating the potency of manufactured cells.

“By combining AI, microscale manufacturing and advanced microscopy, the TIMING platform yields deep insight into cellular behaviors that directly impact human disease and new classes of therapeutics,” says Rebecca Berdeaux, chief scientific officer at CellChorus. “The generous support of NCATS enables our development of computational tools that will ultimately integrate single-cell dynamic functional analysis of cell behavior with intracellular signaling events.”

Houston’s CellChorus Innovation Lab supports both the further development of TIMING and projects for early-access customers. Those customers include top-25 biopharmaceutical companies, venture-backed biotechnology companies, a leading comprehensive cancer center and a top pediatric hospital, says CEO Daniel Meyer.

CellChorus’s publications include papers written in collaboration with researchers from the Baylor College of Medicine, Houston Methodist, MD Anderson, Texas Children’s Hospital, the University of Texas and UTHealth in journals including Nature Cancer, Journal of Clinical Investigation and The Journal for ImmunoTherapy of Cancer.

The new Small Business Technology Transfer (STTR) award will specifically support the development of a scalable integrated software system conceived with the goal of analyzing cells that are not fluorescently labeled. This label-free analysis will be based on new AI and machine learning (ML) models trained on tens of millions of images of cells.

“This is an opportunity to leverage artificial intelligence methods for advancing the life sciences,” says Roysam. “We are especially excited about its applications to advancing cell-based immunotherapy to treat cancer and other diseases.”

The Houston-born-and-bred company couldn’t have a more appropriate home, says Meyer.

“Houston is a premier location for clinical care and the development of biotechnology and life sciences technologies. In particular, Houston has established itself as a leader in the development and delivery of immune cell-based therapies,” the CEO explains. “As a spin-out from the Single Cell Lab at the University of Houston, we benefit from working with world-class experts at local institutions.”

In May, the company received a similar $2.5 million SBIR grant from NCATS at the NIH. Also this summer, CellChorus's technology was featured in Nature Cancer.

MD Anderson Cancer Center is still the best cancer-focused hospital in the U.S. and Texas. Photo by F. Carter Smith/courtesy of MD Anderson

Houston hospitals recognized as best in state, nation in annual report

better than all the rest

Houston’s University of Texas MD Anderson Cancer Center has retained its U.S. News & World Report crown as the best cancer hospital in the U.S.

In the same ranking, Houston Methodist Hospital once again came out on top as the best hospital in Texas. Last year, the hospital shared the top spot. Baylor St. Luke’s Medical Center ranked No. 4, followed by No. 5 Memorial Hermann Hospital.

The accolades appear in U.S. News2024-25 ranking of the country’s best hospitals. Each hospital also ranked among various specialties, such as orthopedics; cardiology, heart, and vascular surgery; cancer; and neurology and neurosurgery.

Since U.S. News introduced its annual hospital survey in 1990, MD Anderson has been ranked one of the two best U.S. hospitals for cancer care. It has maintained its No. 1 ranking for 10 consecutive years.

“At MD Anderson, our mission is clear: to end cancer,” Dr. Peter WT Pisters, president of MD Anderson, says in a news release. “This ranking reflects our relentless commitment to excellence in patient care, research, prevention, and education.”

MD Anderson also ranked highly in three specialties:

  • No. 2 for ear, nose, and throat.
  • No. 9 for urology.
  • No. 14 for gastroenterology and GI surgery.

“The consistent top national recognitions [that] MD Anderson receives for delivering compassionate, evidence-based care is a testament to our dedication to those we serve,” Pisters says.

Elsewhere at the Texas Medical Center, Houston Methodist Hospital was named the No. 1 hospital in Texas for the 13th year in a row. Also, it was lauded as one of the country’s 20 best hospitals for the eighth time.

Along with the general ranking, Houston Methodist Hospital scored high marks in 10 specialties. These include diabetes and endocrinology (No. 6), gastroenterology and GI surgery (No. 7), and pulmonology and lung surgery (No. 8).

Meanwhile, four Houston Methodist community hospitals ranked well in Texas:

  • Houston Methodist The Woodlands Hospital (No. 8).
  • Houston Methodist Sugar Land Hospital (No. 9).
  • Houston Methodist Baytown Hospital (tied at No. 18).
  • Houston Methodist Willowbrook Hospital (tied at No. 23).
The Belfer family, led by oil tycoon Robert Belfer, had donated an additional $20 million to the Belfer Neurodegeneration Consortium. Photo via mdanderson.org

$20M donation drives neurodegeneration research in Houston

big impact

Neurodegeneration is one of the cruelest ways to age, but one recent donation is invigorating research with the goal of eradicating diseases like Alzheimer’s.

This month, Laurence Belfer announced that his family, led by oil tycoon Robert Belfer, had donated an additional $20 million to the Belfer Neurodegeneration Consortium, a multi-institutional initiative that targets the study and treatment of Alzheimer’s disease.

This latest sum brings the family’s donations to BNDC to $53.5 million over a little more than a decade. The Belfer family’s recent donation will be matched by institutional philanthropic efforts, meaning BNDC will actually be $40 million richer.

BNDC was formed in 2012 to help scientists gain stronger awareness of neurodegenerative disease biology and its potential treatments. It incorporates not only The University of Texas MD Anderson Cancer Center, but also Baylor College of Medicine, Massachusetts Institute of Technology (MIT) and Icahn School of Medicine at Mount Sinai.

It is the BNDC’s lofty objective to develop five new drugs for Alzheimer’s disease and related disorders over the next 10 years, with two treatments to demonstrate clinical efficacy.

“Our goal is ambitious, but having access to the vast clinical trial expertise at MD Anderson ensures our therapeutics can improve the lives of patients everywhere,” BNDC Executive Director Jim Ray says in a press release. “The key elements for success are in place: a powerful research model, a winning collaborative team and a robust translational pipeline, all in the right place at the right time.”

It may seem out of place that this research is happening at MD Anderson, but scientists are delving into the intersection between cancer and neurological disease through the hospital’s Cancer Neuroscience Program.

“Since the consortium was formed, we have made tremendous progress in our understanding of the molecular and genetic basis of neurodegenerative diseases and in translating those findings into effective targeted drugs and diagnostics for patients,” Ray continues. “Yet, we still have more work to do. Alzheimer's disease is already the most expensive disease in the United States. As our population continues to age, addressing quality-of-life issues and other challenges of treating and living with age-associated diseases must become a priority.”

And for the magnanimous Belfer family, it already is.

At Rezvani Lab in MD Anderson Cancer Center, scientists train immune cells to fight cancer. Photo via Getty Images

Unique cell therapy developed in Houston doses inaugural patient

cancer-fighting innovation

Replay, a genome-writing company headquartered in San Diego, has announced that its first patient has been dosed with an engineered T-Cell Receptor Natural Killer (TCR-NK) cell therapy for relapsed or refractory multiple myeloma.

What does that have to do with Houston? Last year, Replay incorporated a first-in-class engineered TCR-NK cell therapy product company, Syena, using technology developed by Dr. Katy Rezvani at The University of Texas MD Anderson Cancer Center.

Rezvani, a professor of stem cell transplantation and cellular therapy, is the force behind MD Anderson’s Rezvani Lab, a group of 55 people, all focused on harnessing natural killer cells to combat cancer.

“Everybody thinks that the immune system is fighting viruses and infections, but I feel our immune system is capable of recognizing and killing abnormal cells or cells that are becoming cancerous and they're very powerful. This whole field of immunotherapy really refers to the power of the immune system,” Rezvani tells InnovationMap.

Dr. Katy Rezvani is a professor of stem cell transplantation and cellular therapy and the force behind MD Anderson’s Rezvani Lab, which is focused on harnessing natural killer cells to combat cancer. Photo via mdanderson.org

At Rezvani Lab, scientists train immune cells to fight cancer. While cancer drugs like chemotherapy are still the norm, immunotherapy has gained ground, led by Houston research, including the work of Nobel laureate Jim Allison. The harnessed cells are taught to attack cancerous cells, while ignoring healthy ones, says Rezvani. “We’re turning them into heat-seeking missiles,” she explains.

However, there must be a beacon to signal to those “missiles” that there is something to attack. Much of the field has used chimeric antigen receptors (CARs) to achieve that. But they have limitations.

“CARs can only recognize beacons that sit on the surface of the tumor cells,” Rezvani says. “So basically, it's like the tumor cell has to have a hat on it.”

She says that this usually means that the targets that send off a signal are relatively limited, mostly blood cancers. Using T cell receptors (TCRs) may be able to open up the field to look beyond the “hat.” In other words, TCRs can peer inside cells and see what differentiates a tumor cell from healthy cells. With Replay, Rezvani Lab has developed a first-in-class and first-in-human approach of engineering natural killer cells to express the TCR.

There are six different FDA-approved products that use CAR-T cells, but Rezvani says that her TCR-NK-based technology, though still in its early phases, shows great promise.

“We could use it to target many different types of antigens, many different types of cancers, especially solid tumors," she explains. "These cell therapies have a lot of potential — we call them living drugs… It's not like chemotherapy where you have to keep giving different multiple cycles, these cells are very long lived.”

Rezvani, who started her career in London, says that Houston has been instrumental in the success of her lab.

“There are so many opportunities because we have access to some of the most brilliant minds in research,” Rezvani says. “We have some of the best clinicians in the world. We have patients who come to us who are willing to participate in our clinical trials — really put their trust in us — and are committed and want to participate in these clinical studies.”

The role of funding also plays a part. As Rezvani admitted, bringing a new technology to the market is expensive. The philanthropists who help support trials can’t be forgotten among Houston’s finest.

Whether or not Syena produces the first TCR-NK product on the market, Rezvani is enthusiastic and hopeful for the future of her patients.

“The field of immunotherapy is really expanding, the field of cell therapies is expanding, and there is so much promise,” she says. “The promise of AI, big data, all the engineering tools that we have available, the promise of CRISPR — all of that is going to bring what we've learned from biology, from basic science, together to help us make the cell therapies that are going to be safe and and also very effective for our patients.”

MD Anderson’s goal with the new Institute for Data Science in Oncology is to advance collaborative projects that will bring the power of data science to every decision made at the hospital. Photo via mdanderson.org

Houston organization introduces inaugural cancer-fighting cohort of data sciences, experts

new to hou

The University of Texas MD Anderson Cancer Center is one step closer to ending cancer thanks to its new institute that's focused on data science.

MD Anderson’s goal with the new Institute for Data Science in Oncology (IDSO) is to advance collaborative projects that will bring the power of data science to every decision made at the hospital. And now, the IDSO has announced its inaugural cohort of 33 scientists, clinicians, and staff that will bring it to life, joining the already appointed leadership and focus area co-leads.

“By engaging diverse expertise across all of our mission areas, we will enhance the rich and productive data science ecosystem at MD Anderson to deliver transformational impact for patients,” David Jaffray, Ph.D., director of IDSO and chief technology and digital officer at MD Anderson, says in a press release.

The focus areas for the IDSO are quantitative pathology and medical imaging; single-cell analytics; computational modeling for precision medicine; decision analytics for health; and safety, quality, and access.

The IDSO Affiliates, as they are known, are a mix of existing contributors to the IDSO and team members who were recruited specifically for their expertise in data science. The affiliates were chosen to fulfill a two-year term, during which they will focus on IDSO projects related to the focus areas above. The diverse roster of professionals includes:

“Our affiliates bring expertise, perspectives and commitment from across the institution to foster impactful data science in order to tackle the most urgent needs of our patients and their families,” said Caroline Chung, M.D., director of Data Science Development and Implementation for IDSO and chief data officer at MD Anderson. “People and community are at the heart of our efforts, and establishing the IDSO Affiliates is an exciting step in growing the most impactful ecosystem for data science in the world.”

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston shines among top 10 tech metros in the South, study says

Tops in Tech

A study analyzing top U.S. locales for the tech industry ranked Houston the No. 9 best tech hub in the South.

The report by commercial real estate platform CommercialCafe examined the top 20 Southern metros across nine metrics, such as the growth rates of tech establishments and employment, median tech earnings, a quality of life index, and more.

Like other Texas metros, the study attributes Houston's tech powerhouse status to its growing presence of major tech companies. However, Houston leads the nation with the highest number of patents granted between 2020 and 2024.

"The second-largest metro by population in the South, Houston led the region with an impressive 8,691 tech patent grants in the last five years," the report said. "Once synonymous with oil, Houston is increasingly making its mark as a cleantech hub — and patents reflect this shift."

Houston also experienced an impressive 14 percent growth in tech establishments, with nearly 500 new tech companies moving to the metro. An impressive 32 percent job growth rate also accompanied this change, with over 30,500 tech jobs added between 2019 and 2023.

Here's how Houston stacked up across the remaining five rankings:
  • No. 11 – Tech establishment density
  • No. 15 – Median tech earnings
  • No. 19 – Median tech earnings growth
  • No. 20 – Tech job density
  • No. 20 – Quality of life index

In a separate 2024 report, Houston was the No. 22 best tech city nationwide, showing that the city is certainly making efforts to improve its friendliness toward the tech industry in 2025.

Other top Texas tech hubs in the South
The only other Texas metros to earn spots in the report were Austin (No. 1) and Dallas-Fort Worth (No. 4). Most notably, CommercialCafe says Austin saw a 25 percent increase in tech company density from 2019 to 2023, which is the third-highest growth rate out of all 20 metros.

"Moreover, the metro’s tech scene thrives on a diverse range of segments, including AI and green energy (bolstered by the University of Texas), as well as globally recognized events like [South by Southwest]," the report says. "Thus, with tech companies accounting for more than half of all office leasing activity in 2024, Austin remains a magnet for innovation, talent and investment."

Dallas, on the other hand, has a far greater diversity when it comes to its tech sector and its thriving economic opportunities.

"Not to be outdone, Dallas-Fort Worth moved up from sixth to fourth in this year’s rankings, driven by a 25.9 percent growth in tech company presence — the second-highest increase among the top 20 metros," the report said. "For instance, companies like iRely (which relocated to Irving, Texas) and Diversified (now in Plano, Texas) have joined homegrown successes, such as StackPath and Bestow."

The top 10 best tech metros in the South are:

  • No. 1 – Washington, D.C.
  • No. 2 – Austin, Texas
  • No. 3 – Raleigh, North Carolina
  • No. 4 – Dallas-Fort Worth, Texas
  • No. 5 – Huntsville, Alabama
  • No. 6 – Baltimore, Maryland
  • No. 7 – Durham, North Carolina
  • No. 8 – Atlanta, Georgia
  • No. 9 – Houston, Texas
  • No. 10 – Charlotte, North Carolina
---

This story originally appeared on our sister site, CultureMap.com.

Houston startup, researchers awarded millions to develop Brain Mesh implant

brain health

Houston startup Motif Neurotech and several Rice research groups have been selected by the United Kingdom's Advanced Research + Invention Agency (ARIA) to participate in its inaugural Precision Neurotechnologies program. The program aims to develop advanced brain-interfacing technologies for cognitive and psychiatric conditions.

ARIA will invest $84.2 million over four years in projects that “explore and unlock new methods to interface with the human brain at the circuit level,” according to a news release.

Three of the four Rice labs will collaborate with Houston health tech startup Motif Neurotech to develop Brain Mesh, which is a distributed network of minimally invasive implants that can stimulate neural circuits and stream neural data in real time. The project has been awarded approximately $5.9 million.

Motif Neurotech was spun out of the Rice lab of Jacob Robinson, a professor of electrical and computer engineering and bioengineering and CEO of Motif Neurotech. It will be developed in collaboration with U.K.-based startup MintNeuro, which will help develop custom integrated circuits that will help to miniaturize the implants, according to a separate release.

Robinson will lead the system and network integration and encapsulation efforts for Mesh Points implants. According to Rice, these implants, about the size of a grain of rice, will track and modulate brain states and be embedded in the skull through relatively low-risk surgery.

The Rice lab of Valentin Dragoi, professor of electrical and computer engineering at Rice and the Rosemary and Daniel J. Harrison III Presidential Distinguished Chair in Neuroprosthetics at Houston Methodist, will conduct non-human primate experimental models for Brain Mesh. Kaiyuan Yang, associate professor of electrical and computer engineering who leads the Secure and Intelligent Micro-Systems Lab at Rice, will work on power and data pipeline development to enable the functional miniaturization of the Mesh Points.

“Current neurotechnologies are limited in scale, specificity and compatibility with human use,” Robinson said in a news release. “The Brain Mesh will be a precise, scalable system for brain-state monitoring and modulation across entire neural circuits designed explicitly for human translation. Our team brings together a key set of capabilities and the expertise to not only work through the technical and scientific challenges but also to steward this technology into clinical trials and beyond.”

The fourth Rice lab, led by assistant professor of electrical and computer engineering Jerzy Szablowski, will collaborate with researchers from three universities and two industry partners to develop closed-loop, self-regulating gene therapy for dysfunctional brain circuits. The team is backed by an award of approximately $2.3 million.

“Our goal is to develop a method for returning neural circuits involved in neuropsychiatric illnesses such as epilepsy, schizophrenia, dementia, etc. to normal function and maybe even make them more resilient,” Szablowski said in a news release.

Neurological disorders in the U.K. have a roughly $5.4 billion economic burden, and some estimates run as high as $800 billion annually in terms of economic disruptions in the U.S. These conditions are the leading cause of illness and disability with over one in three people impacted according to the World Health Organization.

Electricity startup expands to Houston with promise of backup battery power

Power Up

An Austin startup that sells electricity and couples it with backup power has entered the Houston market.

Base Power, which claims to be the first and only electricity provider to offer a backup battery, now serves the Houston-area territory served by Houston-based CenterPoint Energy. No solar equipment is required for Base Power’s backup batteries.

The company is initially serving customers in the Cy-Fair, Spring, Cinco Ranch and Mission Bend communities, and will expand to other Houston-area places in the future.

Base Power already serves customers in the Austin and Dallas-Fort Worth markets.

The company says it provides “a cost-effective alternative to generators and solar-battery systems in an increasingly unreliable power grid.”

“Houston represents one of the largest home backup markets in the world, largely due to dramatic weather events that strain the power grid,” says Base Power co-founder and CEO Zach Dell, son of tech billionaire Michael Dell. “We’re eager to provide an accessible energy service that delivers affordable, reliable power to Houston homeowners.”

After paying a $495 or $995 fee that covers installation and permitting, and a $16- or $29-per-month membership fee, Base Power customers gain access to a backup battery and competitive energy rates, the company says. The startup is waiving the $495 setup fee for the first 500 Houston-area homeowners who sign up and make a refundable deposit.

With the Base Power backup package, electricity costs 14.3 cents per kilowatt-hour, which includes Base Power’s 8.5 cents per kilowatt-hour charge and rates charged by CenterPoint. The average electric customer in Houston pays 13 cents per kilowatt-hour, according to EnergySage.

“Base Power is built to solve a problem that so many Texans face: consistent power,” says Justin Lopas, co-founder and chief operating officer of Base Power and a former SpaceX engineer. “Houstonians can now redefine how they power their homes, while also improving the existing power grid.”

Founded in 2023, Base Power has attracted funding from investors such as Thrive Capital, Valor Equity Partners, Altimeter Capital, Trust Ventures, and Terrain. Zach Dell was previously an associate on the investment team at Thrive Capital.

---

This story originally appeared on our sister site, EnergyCapitalHTX.com.