According to a report from National Nurses United, 81.6 percent of nurses said they experienced workplace violence in 2023.

Ask any healthcare worker, and they will have their own story of workplace violence. In the early years of my career, I narrowly missed encountering a gunman in the hospital ER solely because I forgot something and had to return upstairs. While tragedy was avoided in my case, too often, it is not. Such incidents are not isolated; in fact, they are becoming disturbingly common.

According to a report from National Nurses United, 81.6 percent of nurses said they experienced workplace violence in 2023.

As a physician, providing excellent patient care has always been my priority; however, any type of workplace violence disrupts quality care. When the supposedly safe spaces of healing and learning become targets, we must look at ways beyond hardening the exteriors to help prevent such violence within buildings.

For our healthcare systems, the answer may lie within our schools.

Since we lost our daughter and 16 of her classmates and staff at Marjory Stoneman Douglas High School in Parkland, Florida, six years ago, my wife and I have been advocating for enhanced school safety measures for classrooms across the nation.

Seven states have passed Alyssa's Law, named for our daughter, which requires the installation of wearable panic alarm technology in education settings. These alarms, which instantly link every classroom to emergency personnel while also providing mass communication to all staff, serve as a lifeline in times of crisis. These wearable panic alarms are not just outfitted for classrooms: they can be utilized in any workplace setting, including a healthcare system.

Despite their difference in purpose, healthcare facilities and schools share the unique properties of community spaces. Healthcare facilities are safe havens for those who need healing and rest within our community. No one should fear for their safety going to the doctor. Just as lawmakers have rethought and revised school safety requirements, they should do the same for healthcare facilities. Wearable safety technology has emerged as a formidable solution to this pressing issue.

Wearable, mobile duress badge technology is tailor-made for the unique challenges faced by healthcare workers. It is discrete, easy to use, and can be customizable for each healthcare campus. Some duress badge providers have technology that equips nurses, doctors and staff with badges that display their location and the ability to signal the level of emergency with a push of a button. They can use one badge for all campuses within a healthcare system, and they do not have to wait to get in touch with a hospital operator to “sound the alarm” or risk escalating a situation by lunging for a wall-mounted panic button.

Mobile panic alarms offer a nuanced and efficient response mechanism. Whether a minor incident or a life-threatening crisis, healthcare professionals can instantly summon help, ensuring a swifter and more coordinated response.

Texas was one of the first states to take on this alarming trend of workplace violence by passing SB240 last session, mandating facilities to establish a workplace violence prevention plan. Similar legislation is playing out in other states, becoming a nationwide movement.

I know healthcare facilities' budgets are tight these days with unprecedented rising costs of care and lower reimbursement rates. Still, through my personal journey in advocating for safety improvements in our educational institutions, I have learned one thing: you must invest in the future.

The adoption of wearable panic alarms is not just a security upgrade; it's a commitment to the well-being of those who dedicate their lives to provide healing and care. It's about protecting our community spaces. Like any other, the healthcare environment should be a sanctuary, free from the fear of violence. As Alyssa’s Law gains traction nationally, the spotlight now turns to healthcare facilities to embrace this critical technology.

Time, as we know too well, equals life. Swift action can be the difference between tragedy and survival. Investing in wearable panic alarm technology is an investment in our healthcare workforce's safety, resilience, and mental well-being. As we advocate for students to have a safe place to thrive, I am doing the same for healthcare places. The time has come to make our healthcare facilities safe.

------

Dr. Ilan Alhadeff is the father of Alyssa Alhadeff, a victim of the February 14, 2018, school shooting at Marjory Stoneman Douglas High School, and co-founder of Make Our Schools Safe, a 501(c)(3) nonprofit organization dedicated to improving school safety.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston-area lab grows with focus on mobile diagnostics and predictive medicine

mobile medicine

When it comes to healthcare, access can be a matter of life and death. And for patients in skilled nursing facilities, assisted living or even their own homes, the ability to get timely diagnostic testing is not just a convenience, it’s a necessity.

That’s the problem Principle Health Systems (PHS) set out to solve.

Founded in 2016 in Clear Lake, Texas, PHS began as a conventional laboratory but quickly pivoted to mobile diagnostics, offering everything from core blood work and genetic testing to advanced imaging like ultrasounds, echocardiograms, and X-rays.

“We were approached by a group in a local skilled nursing facility to provide services, and we determined pretty quickly there was a massive need in this area,” says James Dieter, founder, chairman and CEO of PHS. “Turnaround time is imperative. These facilities have an incredibly sick population, and of course, they lack mobility to get the care that they need.”

What makes PHS unique is not only what they do, but where they do it. While they operate one of the largest labs serving skilled nursing facilities in the state, their mobile teams go wherever patients are, whether that’s a nursing home, a private residence or even a correctional facility.

Diagnostics, Dieter says, are at the heart of medical decision-making.

“Seventy to 80 percent of all medical decisions are made from diagnostic results in lab and imaging,” he says. “The diagnostic drives the doctor’s or the provider’s next move. When we recognized a massive slowdown in lab results, we had to innovate to do it faster.”

Innovation at PHS isn’t just about speed; it’s about accessibility and precision.

Chris Light, COO, explains: “For stat testing, we use bedside point-of-care instruments. Our phlebotomists take those into the facilities, test at the bedside, and get results within minutes, rather than waiting days for results to come back from a core lab.”

Scaling a mobile operation across multiple states isn’t simple, but PHS has expanded into nine states, including Texas, Oklahoma, Kansas, Missouri and Arizona. Their model relies on licensed mobile phlebotomists, X-ray technologists and sonographers, all trained to provide high-level care outside traditional hospital settings.

The financial impact for patients is significant. Instead of ambulance rides and ER visits costing thousands, PHS services often cost just a fraction, sometimes only tens or hundreds of dollars.

“Traditionally, without mobile diagnostics, the patient would be loaded into a transportation vehicle, typically an ambulance, and taken to a hospital,” Dieter says. “Our approach is a fraction of the cost but brings care directly to the patients.”

The company has also embraced predictive and personalized medicine, offering genetic tests that guide medication decisions and laboratory tests that predict cognitive decline from conditions like Alzheimer's and Parkinson’s.

“We actively look for complementary services to improve patient outcomes,” Dieter says. “Precision medicine and predictive testing have been a great value-add for our providers.”

Looking to the future, PHS sees mobile healthcare as part of a larger trend toward home-based care.

“There’s an aging population that still lives at home with caretakers,” Dieter explains. “We go into the home every day, whether it’s an apartment, a standalone home, or assisted living. The goal is to meet patients where they are and reduce the need for hospitalization.”

Light highlighted another layer of innovation: predictive guidance.

“We host a lot of data, and labs and imaging drive most treatment decisions,” Light says. “We’re exploring how to deploy diagnostics immediately based on results, eliminating hours of delay and keeping patients healthier longer.”

Ultimately, innovation at PHS isn’t just about technology; it’s about equity.

“There’s an 11-year life expectancy gap between major metro areas and rural Texas,” Dieter says. “Our innovation has been leveling the field, so everyone has access to high-quality diagnostics and care, regardless of where they live.”

Aegis Aerospace appoints Houston space leader as new president

moving up

Houston-based Aegis Aerospace's current chief strategy officer, Matt Ondler, will take on the additional role of president on Jan. 1. Ondler will succeed Bill Hollister, who is retiring.

“Matt's vision, experience, and understanding of our evolving markets position us to build on our foundation and pursue new frontiers,” Stephanie Murphy, CEO of Aegis Aerospace, said in a news release.

Hollister guided Aegis Aerospace through expansion and innovation in his three years as president, and will continue to serve in the role of chief technology officer (CTO) for six months and focus on the company's technical and intellectual property frameworks.

"Bill has played an instrumental role in shaping the success and growth of our company, and his contributions leave an indelible mark on both our culture and our achievements," Murphy said in a news release.

Ondler has a background in space hardware development and strategic leadership in government and commercial sectors. Ondler founded subsea robots and software company Houston Mechatronics, Inc., now known as Nauticus Robotics, and also served as president, CTO and CSO during a five-year tenure at Axiom Space. He held various roles in his 25 years at NASA and was also named to the Texas Aerospace Research and Space Economy Consortium Executive Committee last year.

"I am confident that with Matt at the helm as president and Bill supporting us as CTO, we will continue to build on our strong foundation and further elevate our impact in the space industry," Murphy said in a news release. "Matt's vision, experience, and understanding of our evolving markets position us to build on our foundation and pursue new frontiers."

Rice University launches new center to study roots of Alzheimer’s and Parkinson’s

neuro research

Rice University launched its new Amyloid Mechanism and Disease Center last month, which aims to uncover the molecular origins of Alzheimer’s, Parkinson’s and other amyloid-related diseases.

The center will bring together Rice faculty in chemistry, biophysics, cell biology and biochemistry to study how protein aggregates called amyloids form, spread and harm brain cells. It will serve as the neuroscience branch of the Rice Brain Institute, which was also recently established.

The team will work to ultimately increase its understanding of amyloid processes and will collaborate with the Texas Medical Center to turn lab discoveries into real progress for patients. It will hold its launch event on Jan. 21, 2026, and hopes to eventually be a launchpad for future external research funding.

The new hub will be led by Pernilla Wittung-Stafshed, a Rice biophysicist and the Charles W. Duncan Jr.-Welch Chair in Chemistry.

“To make a real difference, we have to go all the way and find a cure,” Wittung-Stafshede said in a news release. “At Rice, with the Amyloid Mechanism and Disease Center as a catalyst, we have the people and ideas to open new doors toward solutions.”

Wittung-Stafshede, who was recruited to Rice through a Cancer Prevention and Research Institute of Texas grant this summer, has led pioneering work on how metal-binding proteins impact neurodegenerative disorders, including Alzheimer’s and Parkinson’s diseases. Her most recent study, published in Advanced Science, suggests a new way of understanding how amyloids may harm cells and consume the brain’s energy molecule, ATP.

According to Alzheimer’s Disease International, neurodegenerative disease cases could reach around 78 million by 2030 and 139 million by 2050. Wittung-Stafshede’s father died of dementia several years ago.

“This is close to my heart,” Wittung-Stafshede added in the news release. “Neurodegenerative diseases such as dementia, Alzheimer’s and Parkinson’s are on the rise as people live longer, and age is the largest risk factor. It affects everyone.”