The Equitable Access Fund is designed to meet demand for business credit among small businesses, especially those run by women, military veterans, people with disabilities, and members of the BIPOC, Latinx, and LGBTQ communities. Photo via HelloAlice.com

Houston-based fintech startup Hello Alice and the nonprofit Global Entrepreneurship Network have teamed up to create a $70 million fund that’ll help enable access to credit for small businesses.

Initial funding for the Equitable Access Fund, which debuted today, comes from Wells Fargo. GEN, which helps people start and build businesses, will manage the fund. Hello Alice’s fintech platform offers credit, loans, and grants to U.S. small business owners.

The new fund will provide credit enhancements — such as loan guarantees, loan-loss reserves and cash-collateral deposits — to ease risks for financing partners and free up money for underserved small business owners who face credit challenges.

The fund’s financing partners include First National Bank of Omaha, which issues Hello Alice’s small business credit card, and certain participants in Hello Alice’s financing marketplace. Other partners include the Mastercard payment network and the Kauffman Foundation, a nonprofit that fosters entrepreneurship.

The fund is designed to meet demand for business credit among small businesses, especially those run by women, military veterans, people with disabilities, and members of the BIPOC, Latinx, and LGBTQ communities. Hello Alice data shows that only one-fourth of small business owners have applied for a business credit card, and 85 percent of those applications were rejected due to poor credit or lack of credit.

Through the Equitable Access Fund, small business owners will be able to obtain a business credit card, build their credit profile, and eventually qualify for traditional credit and lending products. The $70 million fund seeks to unlock as much as $1 billion in credit for thousands of small business owners.

“We’re looking forward to creating more partnerships and bringing more institutions on board to the fund to achieve the goal of equitable access to credit,” Elizabeth Gore and Carolyn Rodz, co-founders of Hello Alice, say in a news release.

Wells Fargo Foundation is backing the Equitable Access Fund.

“Small businesses are a critical contributor to the economy and to building generational wealth,” says Otis Rolley, president of the foundation. “We need to create more pathways for historically marginalized small businesses to grow and prosper.”

In conjunction with GEN and Hello Alice’s Equitable Access Program, small business owners will receive credit-building education and technical assistance through a tool called the Business Health Score. The tool, which Hello Alice launched in April 2023, supplies an overview of a business’ financial condition.

Hello Alice Co-Founders Carolyn Rodz and Elizabeth Gore announced their latest opportunity for founders from marginalized communities to access funding. Photos via helloalice.com

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston doctor wins NIH grant to test virtual reality for ICU delirium

Virtual healing

Think of it like a reverse version of The Matrix. A person wakes up in a hospital bed and gets plugged into a virtual reality game world in order to heal.

While it may sound far-fetched, Dr. Hina Faisal, a Houston Methodist critical care specialist in the Department of Surgery, was recently awarded a $242,000 grant from the National Institute of Health to test the effects of VR games on patients coming out of major surgery in the intensive care unit (ICU).

The five-year study will focus on older patients using mental stimulation techniques to reduce incidences of delirium. The award comes courtesy of the National Institute on Aging K76 Paul B. Beeson Emerging Leaders Career Development Award in Aging.

“As the population of older adults continues to grow, the need for effective, scalable interventions to prevent postoperative complications like delirium is more important than ever,” Faisal said in a news release.

ICU delirium is a serious condition that can lead to major complications and even death. Roughly 87 percent of patients who undergo major surgery involving intubation will experience some form of delirium coming out of anesthesia. Causes can range from infection to drug reactions. While many cases are mild, prolonged ICU delirium may prevent a patient from following medical advice or even cause them to hurt themselves.

Using VR games to treat delirium is a rapidly emerging and exciting branch of medicine. Studies show that VR games can help promote mental activity, memory and cognitive function. However, the full benefits are currently unknown as studies have been hampered by small patient populations.

Faisal believes that half of all ICU delirium cases are preventable through VR treatment. Currently, a general lack of knowledge and resources has been holding back the advancement of the treatment.

Hopefully, the work of Faisal in one of the busiest medical cities in the world can alleviate that problem as she spends the next half-decade plugging patients into games to aid in their healing.

Houston scientists develop breakthrough AI-driven process to design, decode genetic circuits

biotech breakthrough

Researchers at Rice University have developed an innovative process that uses artificial intelligence to better understand complex genetic circuits.

A study, published in the journal Nature, shows how the new technique, known as “Combining Long- and Short-range Sequencing to Investigate Genetic Complexity,” or CLASSIC, can generate and test millions of DNA designs at the same time, which, according to Rice.

The work was led by Rice’s Caleb Bashor, deputy director for the Rice Synthetic Biology Institute and member of the Ken Kennedy Institute. Bashor has been working with Kshitij Rai and Ronan O’Connell, co-first authors on the study, on the CLASSIC for over four years, according to a news release.

“Our work is the first demonstration that you can use AI for designing these circuits,” Bashor said in the release.

Genetic circuits program cells to perform specific functions. Finding the circuit that matches a desired function or performance "can be like looking for a needle in a haystack," Bashor explained. This work looked to find a solution to this long-standing challenge in synthetic biology.

First, the team developed a library of proof-of-concept genetic circuits. It then pooled the circuits and inserted them into human cells. Next, they used long-read and short-read DNA sequencing to create "a master map" that linked each circuit to how it performed.

The data was then used to train AI and machine learning models to analyze circuits and make accurate predictions for how untested circuits might perform.

“We end up with measurements for a lot of the possible designs but not all of them, and that is where building the (machine learning) model comes in,” O’Connell explained in the release. “We use the data to train a model that can understand this landscape and predict things we were not able to generate data on.”

Ultimately, the researchers believe the circuit characterization and AI-driven understanding can speed up synthetic biology, lead to faster development of biotechnology and potentially support more cell-based therapy breakthroughs by shedding new light on how gene circuits behave, according to Rice.

“We think AI/ML-driven design is the future of synthetic biology,” Bashor added in the release. “As we collect more data using CLASSIC, we can train more complex models to make predictions for how to design even more sophisticated and useful cellular biotechnology.”

The team at Rice also worked with Pankaj Mehta’s group in the department of physics at Boston University and Todd Treangen’s group in Rice’s computer science department. Research was supported by the National Institutes of Health, Office of Naval Research, the Robert J. Kleberg Jr. and Helen C. Kleberg Foundation, the American Heart Association, National Library of Medicine, the National Science Foundation, Rice’s Ken Kennedy Institute and the Rice Institute of Synthetic Biology.

James Collins, a biomedical engineer at MIT who helped establish synthetic biology as a field, added that CLASSIC is a new, defining milestone.

“Twenty-five years ago, those early circuits showed that we could program living cells, but they were built one at a time, each requiring months of tuning,” said Collins, who was one of the inventors of the toggle switch. “Bashor and colleagues have now delivered a transformative leap: CLASSIC brings high-throughput engineering to gene circuit design, allowing exploration of combinatorial spaces that were previously out of reach. Their platform doesn’t just accelerate the design-build-test-learn cycle; it redefines its scale, marking a new era of data-driven synthetic biology.”