Houston Methodist opened a new tech hub in the Ion this week. Photo by Shannon O’Hara/Ion

Photos: Houston hospital opens tech hub in the Ion

innovation outpost

A Houston hospital has opened an innovation outpost in the Ion this week in order to showcase health tech innovation and connect with Houston innovators.

The Houston Methodist Tech Hub at Ion hub has officially opened. The 1,200-square-foot space was created in addition to the Center for Innovation Technology Hub that's in Houston Methodist’s flagship location in the Texas Medical Center, which opened in February 2020.

The new space, located on the lower level of the Ion, exists to serve as a common ground for innovators across industries to promote collisions and innovation, as well as interaction with Houston Methodist team members

“Our new Tech Hub at Ion supports not only our commitment to the Houston innovation community but also to the rapidly shifting healthcare industry,” Michelle Stansbury, vice president of innovation and IT applications at Houston Methodist, says in a statement. “We know we can’t solve the healthcare challenges of the future if we confine ourselves within our hospital walls or even within our own industry.

"We look forward to the collaborative space our new Tech Hub will provide and the future programming opportunities we can create together to inspire, challenge, and foster a spirit of innovation in our city.”

The new hub, according to the news release, also will host educational events, reverse pitch sessions, and more. Visitors can schedule a time to view the space or connect with the Houston Methodist innovation team by filling out a form online.

The hub, which was originally announced last year, is the latest partner to open within the Ion's space. Earlier this year, the organization announced other new tenants.

“Houston Methodist’s space at the Ion opens up even more opportunities for our start-up and entrepreneur community to embed and gain exposure to the latest innovations in health care, health technology, and digital health,” Jan E. Odegard, executive director of Ion, says. “This partnership and opportunity provided by Houston Methodist, a leading healthcare organization in the country, is a testament to the ecosystem we’re building and the talent within our building. Furthermore, Houston Methodist’s approach and appetite for cross-industry innovation and collaboration meshes seamlessly with the Ion’s ongoing plans to support Houston’s growing innovation community in industries and fields that will change the world.”

Both of Houston Methodist's tech hubs will showcase its latest technologies its implementing in its hospital system, including the "hospital of the future" it's building out in Cypress.

Collaborative effort

Photo by Shannon O’Hara/Ion

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Rice University lands $18M to revolutionize lymphatic disease detection

fresh funding

An arm of the U.S. Department of Health and Human Services has awarded $18 million to scientists at Rice University for research that has the potential to revolutionize how lymphatic diseases are detected and help increase survivability.

The lymphatic system is the network of vessels all over the body that help eliminate waste, absorb fat and maintain fluid balance. Diseases in this system are often difficult to detect early due to the small size of the vessels and the invasiveness of biopsy testing. Though survival rates of lymph disease have skyrocketed in the United States over the last five years, it still claims around 200,000 people in the country annually.

Early detection of complex lymphatic anomalies (CLAs) and lymphedema is essential in increasing successful treatment rates. That’s where Rice University’s SynthX Center, directed by Han Xiao and Lei Li, an assistant professor of electrical and computer engineering, comes in.

Aided by researchers from Texas Children’s Hospital, Baylor College of Medicine, the University of Texas at Dallas and the University of Texas Southwestern Medical Center, the center is pioneering two technologies: the Visual Imaging System for Tracing and Analyzing Lymphatics with Photoacoustics (VISTA-LYMPH) and Digital Plasmonic Nanobubble Detection for Protein (DIAMOND-P).

Simply put, VISTA-LYMPH uses photoacoustic tomography (PAT), a combination of light and sound, to more accurately map the tiny vessels of the lymphatic system. The process is more effective than diagnostic tools that use only light or sound, independent of one another. The research award is through the Advanced Research Projects Agency for Health (ARPA-H) Lymphatic Imaging, Genomics and pHenotyping Technologies (LIGHT) program, part of the U.S. HHS, which saw the potential of VISTA-LYMPH in animal tests that produced finely detailed diagnostic maps.

“Thanks to ARPA-H’s award, we will build the most advanced PAT system to image the body’s lymphatic network with unprecedented resolution and speed, enabling earlier and more accurate diagnosis,” Li said in a news release.

Meanwhile, DIAMOND-P could replace the older, less exact immunoassay. It uses laser-heated vapors of plasmonic nanoparticles to detect viruses without having to separate or amplify, and at room temperature, greatly simplifying the process. This is an important part of greater diagnosis because even with VISTA-LYMPH’s greater imaging accuracy, many lymphatic diseases still do not appear. Detecting biological markers is still necessary.

According to Rice, the efforts will help address lymphatic disorders, including Gorham-Stout disease, kaposiform lymphangiomatosis and generalized lymphatic anomaly. They also could help manage conditions associated with lymphatic dysfunction, including cancer metastasis, cardiovascular disease and neurodegeneration.

“By validating VISTA-LYMPH and DIAMOND-P in both preclinical and clinical settings, the team aims to establish a comprehensive diagnostic pipeline for lymphatic diseases and potentially beyond,” Xiao added in the release.

The ARPA-H award funds the project for up to five years.

Houston doctor wins NIH grant to test virtual reality for ICU delirium

Virtual healing

Think of it like a reverse version of The Matrix. A person wakes up in a hospital bed and gets plugged into a virtual reality game world in order to heal.

While it may sound far-fetched, Dr. Hina Faisal, a Houston Methodist critical care specialist in the Department of Surgery, was recently awarded a $242,000 grant from the National Institute of Health to test the effects of VR games on patients coming out of major surgery in the intensive care unit (ICU).

The five-year study will focus on older patients using mental stimulation techniques to reduce incidences of delirium. The award comes courtesy of the National Institute on Aging K76 Paul B. Beeson Emerging Leaders Career Development Award in Aging.

“As the population of older adults continues to grow, the need for effective, scalable interventions to prevent postoperative complications like delirium is more important than ever,” Faisal said in a news release.

ICU delirium is a serious condition that can lead to major complications and even death. Roughly 87 percent of patients who undergo major surgery involving intubation will experience some form of delirium coming out of anesthesia. Causes can range from infection to drug reactions. While many cases are mild, prolonged ICU delirium may prevent a patient from following medical advice or even cause them to hurt themselves.

Using VR games to treat delirium is a rapidly emerging and exciting branch of medicine. Studies show that VR games can help promote mental activity, memory and cognitive function. However, the full benefits are currently unknown as studies have been hampered by small patient populations.

Faisal believes that half of all ICU delirium cases are preventable through VR treatment. Currently, a general lack of knowledge and resources has been holding back the advancement of the treatment.

Hopefully, the work of Faisal in one of the busiest medical cities in the world can alleviate that problem as she spends the next half-decade plugging patients into games to aid in their healing.