The new technology includes the addition of automated security lanes and high-tech scanners. Rendering courtesy of Houston Airports

A new terminal currently under construction at George Bush Intercontinental Airport just got the green light for new security technology.

This week, Houston City Council unanimously approved the funding for the new Mickey Leland International Terminal's security equipment. The Mickey Leland International Terminal Project is part of the $1.43 billion IAH Terminal Redevelopment Program, or ITRP, which is expected to be completed by early next year.

This new IAH International Terminal will feature an International Central Processor, or ICP, with state-of-the-art technology in a 17-lane security checkpoint — among the largest in the country — as well as ticket counters and baggage claim.

“Houston Airports strives to get passengers through TSA Security in 20 minutes or less. Today, we meet that goal at Bush Airport more than 90 percent of the time,” Jim Szczesniak, director of aviation for Houston Airports, says in a news release. “This investment in innovative technology will enhance our efficiency and ensure that our passengers have a world-class experience each time they visit our airports.”

Going through security at IAH is about to be smoother sailing. Rendering courtesy of Houston Airports

The funding approval came from two ordinances, and the first one appropriates $11.8 million from the Airports Improvement Fund to buy, service, install, and train staff on nine new automated screening lanes, called Scarabee Checkpoint Property Screening Systems, or CPSS.

Per the news release, each of these CCPS automated lanes "is capable of screening more than 100 additional people and bags/hour than existing equipment used today." Currently, Terminal D's TSA is using eight CPSS Lanes, so the additional nine lanes will bring the total to 17 lanes of security.

The other appropriates another $1.2 million from the Airports Improvement Fund to buy, install, maintain, and train staff on six new Advanced Imaging Technology Quick Personnel Security Scanners.

The new scanners, which don't require the traveler to raise their arms, "is capable of screening more than 100 additional people/hour than existing equipment used today," per the release.

“These new security screening machines are faster, have fewer false alarms and have improved detection rates, which creates a safer experience for our passengers and airlines,” Federal Security Director for TSA at IAH Juan Sanchez adds.

The Mickey Leland International Terminal originally opened in 1990 and is currently under renovation. Rendering courtesy of Houston Airports

Texas Southern University got the greenlight for funding for its flight academy. Photo courtesy of Houston Airport System

City approves $5.5M investment for Houston flight school

greenlight

Houston City Council approved Houston Airports to use $5.5 million from its Airport Improvement Fund to build the Texas Southern University Flight Academy at Ellington Airport.

The new facility will add to student learning with TSU’s aviation program and internships. Construction will begin in May of 2024 with an expected completion of May 2025.

“The investment in this facility allows Houston to remain at the forefront of supporting the rapid growth of the air transportation industry in the United States,” Mayor Sylvester Turner says in a news release. “I am honored that the City of Houston is taking the initiative to build this facility, which will provide numerous opportunities for Houstonians in the future."

TSU expanded its flight training fleet at Ellington Airport with the addition of a new Cessna 172, which brings the university to nine aircrafts that are available to help expand the program.TSU also has a virtual airport laboratory that trains pilots, air traffic controllers, and airport officers.

Construction is expected to begin in May of 2024 with an anticipated completion of May 2025. Rendering courtesy of Houston Airport Systen

The facility will be two acres and built on land accessible to an existing taxi-lane connection. The facility includes a 24,000 square foot aircraft hangar, an 11,000 square feet of aircraft apron, a 4,200 square feet of office/training/classroom space, an 8,000 gallon above-ground aviation fuel tank, and vehicle parking.

“This new facility is a major step toward Texas Southern University becoming the premier destination for training pilots and aviation professionals of the future,” TSU Interim President Mary Evans Sias says in a news release. “Our aviation program has reached heights in achievement that are unprecedented for the state of Texas. We look forward to the future aviators who will come through these doors and leave prepared to seize the opportunities in aviation, which we know are only increasing. We are deeply appreciative of the City of Houston for making this investment into TSU, and we know the return on this investment will be worthwhile.”

The Houston City Council approved a memorandum of agreement this past May for five years between Houston Airports and TSU.

“Houston Airports is a proud partner of TSU as it educates and inspires the next generation of pilots, mechanics and air traffic controllers,” Mario Diaz, director of Aviation for Houston Airports, says in a news release. “From training pilots during World War 1, and NASA astronauts as they prepared to step on the moon, to now training the next generation of aviation professionals, Ellington Airport continues to play a crucial role in Houston’s aviation history.”

UH's business school has a new program focused on artificial intelligence thanks to a partnership with Intel. Photo via uh.edu

University of Houston, Intel team up to prepare workforce for AI revolution

back to school

The University of Houston’s C.T. Bauer College of Business has teamed up with semiconductor chip manufacturer Intel Corp. to provide training in artificial intelligence.

The new artificial intelligence program features a standalone business certificate with two specialized courses; the first course launched in January. Bauer also plans to offer non-degree certificate programs in AI, such as the AI Certificate for Entrepreneurship and AI Certificate for Executive Education.

In a news release, Elizabeth McGee, chief strategy and innovation adviser at Santa Clara, California-based Intel, says the UH initiative will help bridge the AI knowledge gap. An online search indicates hundreds of AI-related jobs are open in the Houston area.

“Digital upskilling, or digital readiness, needs to be a catapult for economic prosperity for everyone and not a dividing point,” McGee says. “I commend the University of Houston for being the first higher education institution to take our award-winning curriculum and lend your expertise in entrepreneurship, your access to the broader Houston community, and supporting this digital upskilling for everyone.”

AI education has taken on a greater sense of urgency as the healthcare and energy sectors, among others, incorporate AI into their operations.

Paul Pavlou, dean of the Bauer College and Cullen Distinguished Chair Professor, says the collaboration between UH and Intel will help propel growth and innovation in Houston’s tech sector. Intel, whose only Texas location is in Austin, is a key player in the expanding AI market.

“Intel has been very generous with their resources, and with our expertise in analytics and faculty research and students’ initiative in bringing new products to life, the opportunities for this collaboration to be transformative are endless,” Pavlou says.

AI is growing at an incredibly rapid pace. According to Precedence Research, the size of the global AI market was estimated at $119.78 billion in 2022 and is expected to reach nearly $1.6 trillion by 2030.

“While some markets, sectors and individual businesses are more advanced than others, AI is still at a very early stage of development overall,” says professional services firm PwC. “From a macroeconomic point of view, there are … opportunities for emerging markets to leapfrog more developed counterparts.”

AI is viewed as both positive and negative in terms of today’s workforce.

“AI is a fast-evolving technology with great potential to make workers more productive, to make firms more efficient, and to spur innovations in new products and services. At the same time, AI can also be used to automate existing jobs and exacerbate inequality, and it can lead to discrimination against workers,” says a report published by the White House in 2022.

Houston Mayor Sylvester Turner and Houston City Council celebrated “AI Innovation and Entrepreneurship Day” at City Hall on Feb. 7. Photo via Facebook

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston engineers develop breakthrough device to advance spinal cord treatment

future of health

A team of Rice University engineers has developed an implantable probe over a hundred times smaller than the width of a hair that aims to help develop better treatments for spinal cord disease and injury.

Detailed in a recent study published in Cell Reports, the probe or sensor, known as spinalNET, is used to explore how neurons in the spinal cord process sensation and control movement, according to a statement from Rice. The research was supported by the National Institutes of Health, Rice, the California-based Salk Institute for Biological Studies, and the philanthropic Mary K. Chapman Foundation based in Oklahoma.

The soft and flexible sensor was used to record neuronal activity in freely moving mice with high resolution for multiple days. Historically, tracking this level of activity has been difficult for researchers because the spinal cord and its neurons move so much during normal activity, according to the team.

“We developed a tiny sensor, spinalNET, that records the electrical activity of spinal neurons as the subject performs normal activity without any restraint,” Yu Wu, a research scientist at Rice and lead author of the study said in a statement. “Being able to extract such knowledge is a first but important step to develop cures for millions of people suffering from spinal cord diseases.”

The team says that before now the spinal cord has been considered a "black box." But the device has already helped the team uncover new findings about the body's rhythmic motor patterns, which drive walking, breathing and chewing.

Lan Luan (from left), Yu Wu, and Chong Xie are working on the breakthrough device. Photo by Jeff Fitlow/Rice University

"Some (spinal neurons) are strongly correlated with leg movement, but surprisingly, a lot of neurons have no obvious correlation with movement,” Wu said in the statement. “This indicates that the spinal circuit controlling rhythmic movement is more complicated than we thought.”

The team said they hope to explore these findings further and aim to use the technology for additional medical purposes.

“In addition to scientific insight, we believe that as the technology evolves, it has great potential as a medical device for people with spinal cord neurological disorders and injury,” Lan Luan, an associate professor of electrical and computer engineering at Rice and a corresponding author on the study, added in the statement.

Rice researchers have developed several implantable, minimally invasive devices to address health and mental health issues.

In the spring, the university announced that the United States Department of Defense had awarded a four-year, $7.8 million grant to the Texas Heart Institute and a Rice team led by co-investigator Yaxin Wang to continue to break ground on a novel left ventricular assist device (LVAD) that could be an alternative to current devices that prevent heart transplantation.

That same month, the university shared news that Professor Jacob Robinson had published findings on minimally invasive bioelectronics for treating psychiatric conditions. The 9-millimeter device can deliver precise and programmable stimulation to the brain to help treat depression, obsessive-compulsive disorder and post-traumatic stress disorder.

Houston clean hydrogen startup to pilot tech with O&G co.

stay gold

Gold H2, a Houston-based producer of clean hydrogen, is teaming up with a major U.S.-based oil and gas company as the first step in launching a 12-month series of pilot projects.

The tentative agreement with the unnamed oil and gas company kicks off the availability of the startup’s Black 2 Gold microbial technology. The technology underpins the startup’s biotech process for converting crude oil into proprietary Gold Hydrogen.

The cleantech startup plans to sign up several oil and gas companies for the pilot program. Gold H2 says it’s been in discussions with companies in North America, Latin America, India, Eastern Europe and the Middle East.

The pilot program is aimed at demonstrating how Gold H2’s technology can transform old oil wells into hydrogen-generating assets. Gold H2, a spinout of Houston-based biotech company Cemvita, says the technology is capable of producing hydrogen that’s cheaper and cleaner than ever before.

“This business model will reshape the traditional oil and gas industry landscape by further accelerating the clean energy transition and creating new economic opportunities in areas that were previously dismissed as unviable,” Gold H2 says in a news release.

The start of the Black 2 Gold demonstrations follows the recent hiring of oil and gas industry veteran Prabhdeep Singh Sekhon as CEO.

“With the proliferation of AI, growth of data centers, and a national boom in industrial manufacturing underway, affordable … carbon-free energy is more paramount than ever,” says Rayyan Islam, co-founder and general partner at venture capital firm 8090 Industries, an investor in Gold H2. “We’re investing in Gold H2, as we know they’ll play a pivotal role in unleashing a new dawn for energy abundance in partnership with the oil industry.”

------

This article originally ran on EnergyCapital.

3 Houston innovators to know this week

who's who

Editor's note: Every week, I introduce you to a handful of Houston innovators to know recently making headlines with news of innovative technology, investment activity, and more. This week's batch includes an e-commerce startup founder, an industrial biologist, and a cellular scientist.

Omair Tariq, co-founder and CEO of Cart.com

Omair Tariq of Cart.com joins the Houston Innovators Podcast to share his confidence in Houston as the right place to scale his unicorn. Photo via Cart.com

Houston-based Cart.com, which operates a multichannel commerce platform, has secured $105 million in debt refinancing from investment manager BlackRock.

The debt refinancing follows a recent $25 million series C extension round, bringing Cart.com’s series C total to $85 million. The scaleup’s valuation now stands at $1.2 billion, making it one of the few $1 billion-plus “unicorns” in the Houston area.

Cart.com was co-founded by CEO Omair Tariq in October 2020. Read more.

Nádia Skorupa Parachin, vice president of industrial biotechnology at Cemvita

Nádia Skorupa Parachin joined Cemvita as vice president of industrial biotechnology. Photo courtesy of Cemvita

Houston-based biotech company Cemvita recently tapped two executives to help commercialize its sustainable fuel made from carbon waste.

Nádia Skorupa Parachin came aboard as vice president of industrial biotechnology, and Phil Garcia was promoted to vice president of commercialization.

Parachin most recently oversaw several projects at Boston-based biotech company Ginkjo Bioworks. She previously co-founded Brazilian biotech startup Integra Bioprocessos. Read more.

Han Xiao, associate professor of chemistry at Rice University

The funds were awarded to Han Xiao, a chemist at Rice University.

A Rice University chemist has landed a $2 million grant from the National Institute of Health for his work that aims to reprogram the genetic code and explore the role certain cells play in causing diseases like cancer and neurological disorders.

The funds were awarded to Han Xiao, the Norman Hackerman-Welch Young Investigator, associate professor of chemistry, from the NIH's Maximizing Investigators’ Research Award (MIRA) program, which supports medically focused laboratories. Xiao will use the five-year grant to advance his work on noncanonical amino acids.

“This innovative approach could revolutionize how we understand and control cellular functions,” Xiao said in the statement. Read more.