Robert Kester co-founded Rebellion Photonics, which was acquired by Honeywell Process Solutions in 2019. Photo courtesy of Honeywell

Houston tech executive Robert Kester has joined Houston-based Veriten, an energy-focused research, investment and strategy firm, as technology and innovation partner.

Kester most recently served as chief technology officer for emissions solutions at Honeywell Process Solutions, where he worked for five years. Honeywell International acquired Houston-based oil and gas technology company Rebellion Photonics, where Kester was co-founder and CEO, in 2019.

Honeywell Process Solutions shares offices in Houston with the global headquarters of Honeywell Performance Materials and Technologies. Honeywell, a Fortune 100 conglomerate, employs more than 850 people in Houston.

“We are thrilled to welcome Robert to the Veriten team,” founder and CEO Maynard Holt said in a statement, “and are confident that his technical expertise and skills will make a big contribution to Veriten’s partner and investor community. He will [oversee] every aspect of what we do, with the use case for AI in energy high on the 2025 priority list.”

Kester earned a doctoral degree in bioengineering from Rice University, a master’s degree in optical sciences from the University of Arizona and a bachelor’s degree in laser optical engineering technology from the Oregon Institute of Technology. He holds 25 patents and has more than 25 patents pending.

Veriten celebrated its third anniversary on January 10, the day that the hiring of Kester was announced. The startup launched with seven employees.

“With the addition of Dr. Kester, we are a 26-person team and are as enthusiastic as ever about improving the energy dialogue and researching the future paths for energy,” Holt added.

Kester spoke on the Houston Innovators Podcast in 2021. Listen here

.

Houston-based Honeywell Process Solutions is moving down the road in order to expand its local presence. Courtesy of Parkway

Houston-based tech subsidiary moves its headquarters to new space

On to the next

A major technology solutions company announced its relocating it's Houston-based subsidiary to a bigger space. Fortune 100 company Honeywell has executed a long-term lease at CityWestPlace for Honeywell Process Solutions.

The company is relocating its Houston office from off Beltway 8 and Briar Forest to CityWestPlace Building 1, which is just south of its current office. The larger, 114,068-square-foot office space is expected to open by late 2019. The company will have 750 of its employees in the new building

"Parkway is thrilled to welcome Honeywell, a company with an extensive history and acclaimed reputation for creating exceptional products, solving complex problems through software solutions, and implementing cutting-edge technologies in a variety of industries including oil and gas, to CityWestPlace," says Parkway's senior leasing manager, J.P. Hutcheson, in a release.

CityWestPlace, which is operated by Parkway Property Investments, LLC, boasts of 1,473,177 rentable square feet across four campus buildings in Houston's Westchase District. Honeywell was represented by Rich Pancioli and John Morris with CBRE; JP Hutcheson led efforts on behalf of Parkway in the transaction.

The CityWestPlace campus spans 35 acres and has three dining spots, two fitness centers, and recreational offerings, such as a soccer field, outdoor track, sand volleyball court, indoor basketball court, horseshoe pit and bocce ball court.

Honeywell's new Houston office allows the company to expand.Courtesy of Parkway

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

UH receives $2.6M gift to support opioid addiction research and treatment

drug research

The estate of Dr. William A. Gibson has granted the University of Houston a $2.6 million gift to support and expand its opioid addiction research, including the development of a fentanyl vaccine that could block the drug's ability to enter the brain.

The gift builds upon a previous donation from the Gibson estate that honored the scientist’s late son Michael, who died from drug addiction in 2019. The original donation established the Michael C. Gibson Addiction Research Program in UH's department of psychology. The latest donation will establish the Michael Conner Gibson Endowed Professorship in Psychology and the Michael Conner Gibson Research Endowment in the College of Liberal Arts and Social Sciences.

“This incredibly generous gift will accelerate UH’s addiction research program and advance new approaches to treatment,” Daniel O’Connor, dean of the College of Liberal Arts and Social Sciences, said in a news release.

The Michael C. Gibson Addiction Research Program is led by UH professor of psychology Therese Kosten and Colin Haile, a founding member of the UH Drug Discovery Institute. Currently, the program produces high-profile drug research, including the fentanyl vaccine.

According to UH, the vaccine can eliminate the drug’s “high” and could have major implications for the nation’s opioid epidemic, as research reveals Opioid Use Disorder (OUD) is treatable.

The endowed professorship is combined with a one-to-one match from the Aspire Fund Challenge, a $50 million grant program established in 2019 by an anonymous donor. UH says the program has helped the university increase its number of endowed chairs and professorships, including this new position in the department of psychology.

“Our future discoveries will forever honor the memory of Michael Conner Gibson and the Gibson family,” O’Connor added in the release. “And I expect that the work supported by these endowments will eventually save many thousands of lives.”

CenterPoint and partners launch AI initiative to stabilize the power grid

AI infrastructure

Houston-based utility company CenterPoint Energy is one of the founding partners of a new AI infrastructure initiative called Chain Reaction.

Software companies NVIDIA and Palantir have joined CenterPoint in forming Chain Reaction, which is aimed at speeding up AI buildouts for energy producers and distributors, data centers and infrastructure builders. Among the initiative’s goals are to stabilize and expand the power grid to meet growing demand from data centers, and to design and develop large data centers that can support AI activity.

“The energy infrastructure buildout is the industrial challenge of our generation,” Tristan Gruska, Palantir’s head of energy and infrastructure, says in a news release. “But the software that the sector relies on was not built for this moment. We have spent years quietly deploying systems that keep power plants running and grids reliable. Chain Reaction is the result of building from the ground up for the demands of AI.”

CenterPoint serves about 7 million customers in Texas, Indiana, Minnesota and Ohio. After Hurricane Beryl struck Houston in July 2024, CenterPoint committed to building a resilient power grid for the region and chose Palantir as its “software backbone.”

“Never before have technology and energy been so intertwined in determining the future course of American innovation, commercial growth, and economic security,” Jason Wells, chairman, president and CEO of CenterPoint, added in the release.

In November, the utility company got the go-ahead from the Public Utility Commission of Texas for a $2.9 billion upgrade of its Houston-area power grid. CenterPoint serves 2.9 million customers in a 12-county territory anchored by Houston.

A month earlier, CenterPoint launched a $65 billion, 10-year capital improvement plan to support rising demand for power across all of its service territories.

---

This article originally appeared on our sister site, EnergyCapitalHTX.com.

Houston researchers develop material to boost AI speed and cut energy use

ai research

A team of researchers at the University of Houston has developed an innovative thin-film material that they believe will make AI devices faster and more energy efficient.

AI data centers consume massive amounts of electricity and use large cooling systems to operate, adding a strain on overall energy consumption.

“AI has made our energy needs explode,” Alamgir Karim, Dow Chair and Welch Foundation Professor at the William A. Brookshire Department of Chemical and Biomolecular Engineering at UH, explained in a news release. “Many AI data centers employ vast cooling systems that consume large amounts of electricity to keep the thousands of servers with integrated circuit chips running optimally at low temperatures to maintain high data processing speed, have shorter response time and extend chip lifetime.”

In a report recently published in ACS Nano, Karim and a team of researchers introduced a specialized two-dimensional thin film dielectric, or electric insulator. The film, which does not store electricity, could be used to replace traditional, heat-generating components in integrated circuit chips, which are essential hardware powering AI.

The thinner film material aims to reduce the significant energy cost and heat produced by the high-performance computing necessary for AI.

Karim and his former doctoral student, Maninderjeet Singh, used Nobel prize-winning organic framework materials to develop the film. Singh, now a postdoctoral researcher at Columbia University, developed the materials during his doctoral training at UH, along with Devin Shaffer, a UH professor of civil engineering, and doctoral student Erin Schroeder.

Their study shows that dielectrics with high permittivity (high-k) store more electrical energy and dissipate more energy as heat than those with low-k materials. Karim focused on low-k materials made from light elements, like carbon, that would allow chips to run cooler and faster.

The team then created new materials with carbon and other light elements, forming covalently bonded sheetlike films with highly porous crystalline structures using a process known as synthetic interfacial polymerization. Then they studied their electronic properties and applications in devices.

According to the report, the film was suitable for high-voltage, high-power devices while maintaining thermal stability at elevated operating temperatures.

“These next-generation materials are expected to boost the performance of AI and conventional electronics devices significantly,” Singh added in the release.