Thomas Vassiliades, CEO of BiVACOR, joins the Houston Innovators Podcast. Photo courtesy of BiVACOR

Heart disease is one of the most common causes of death in the United States — one in five deaths, according to the CDC. But there's not a long-term solutions for patients — even for those lucky enough to have a successful heart transplant. But a Houston-headquartered medical device company is working on one.

BiVACOR has created a technology that, theoretically, could completely replace a patient's heart and last them the rest of their lives.

"The design is critical," says Thomas Vassiliades, CEO of BiVACOR, on the Houston Innovators Podcast. He joined the organization last year after spending 20 years of a heart surgeon, then transitioning to medical device development over a decade ago.

Vassiliades explains the industry's challenges on the show, saying that there's no comprehensive, lasting replacement to the human heart on the market. While some treatments — like transplants and medical devices that partially replace the heart's capabilities — exist, nothing that completely replaces the heart lasts longer than 10 to 12 years.

"The BiVACOR system is based on magnetic levitation," Vassiliades says about the technology. "Our pump is just one moving impeller that sits in the middle of the housing where the blood is. Imagine an artificial heart — the container that has your blood — and the device spinning in the inside — basically a wheel spinning your blood to the rest of your body.

"The device is suspended by magnets — it's not touching anything," he continues. "So, theoretically, the device has no wear and can last as long as the patient can possibly live. That's new to the field."

Daniel Timms, BiVACOR's founder and CTO, knew there had to be a better, more permanent solution and has been working on the technology since he was a postdoctoral student at Queensland University of Technology in Australia. His work took him to Houston's Texas Heart Institute, the "center of the universe when it comes to blood pumps," says Vassiliades.

The company recently raised $18 million in funding to support its growing team and continued growth. BiVACOR is a Class 3 medical device — the most rigorously regulated type of device, so the funding raised will support the company as it continues to meet the FDA's requirements and proceeds into implantation and clinical trials.

While headquartered in Houston and has close ties to THI, most of BiVACOR's team works out of Huntington Beach, California, just 30 minutes away from its manufacturing partner — something that has been critical for the design phase. Other employees work in Europe and Australia, which has resulted in government grant funding. Each market the company works in has a strategic purpose — and Houston's role is testing.

"We're going to be training all our clinical sites in Houston, and we're going to continue to do ongoing testing," he says. "We're very comfortable with the design of the device, ... but there's always more. And we have a long-term plan to iterate on the device to make it even better."

Vassiliades shares more of the challenges he's facing as he commercializes BiVACOR's technology on the podcast. Listen to the interview below — or wherever you stream your podcasts — and subscribe for weekly episodes.


Houston-based Procyrion has closed a $30 million round — doubling its total funding to date. Getty Images

Houston medical device company closes $30 million round

Follow the money

A clinical-stage medical device company based in Houston has rounded up $30 million for its Series D funding. Procyrion Inc.'s round was lead by Bluebird Ventures — a new funding partner for the company.

Procyrion is developing a blood pump, called the Aortix™ system, that's optimized for patients with heart and kidney failure. Joining in on the round with Bluebird are return investors, including Fannin Partners, Scientific Health Development, the State of Texas, and an undisclosed strategic investor. This round has now more than doubled the company's total funding, bringing that figure now to $59 million.

"Of the more than 1 million patients per year in the U.S. admitted to the hospital with acute decompensated heart failure, 25 to 30 percent also have worsening renal function," says Eric S. Fain, president and CEO of the company, in a release. "These are typically the most difficult to treat patients with high mortality and rehospitalization rates."

The funds, Fain says, will go toward advancing the medical device, specifically enhancing the system's ability to decongest cardio renal patients in the company's pilot program.

"Today there is a major gap in effective therapies that are available to treat these critically ill patients, and as such, there is a significant opportunity to improve patient outcomes," Fain continues in the release. "The Aortix device is uniquely designed and positioned in the body to simultaneously decrease the workload of the heart and improve kidney function."

The Aortix device is a solution for patients who haven't seen success from medical therapy, but don't have the immediate need for a transplant or more drastic solution. The device is thinner than a pencil, the release says, and can be inserted in a matter of minutes in a cath-lab setting. The size and ease of application could be transformational for the large population of heart patients that would need it.

In addition to the funds, Jeff Bird, managing director of Bluebird Ventures, will join the company's board of directors.

"The Procyrion Aortix device provides an elegant solution for managing heart failure, a serious and difficult-to-treat problem," says Bird in the release. "We are excited to work with this experienced team as they begin clinical testing."


The device is thinner than a pencil and can be inserted in less than 10 minutes. Photo via procyrion.com

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

2 Houston space tech cos. celebrate major tech milestones

big wins

Two Houston aerospace companies — Intuitive Machines and Venus Aerospace — have reached testing milestones for equipment they’re developing.

Intuitive Machines recently completed the first round of “human in the loop” testing for its Moon RACER (Reusable Autonomous Crewed Exploration Rover) lunar terrain vehicle. The company conducted the test at NASA’s Johnson Space Center.

RACER is one of three lunar terrain vehicles being considered by NASA for the space agency’s Artemis initiative, which will send astronauts to the moon.

NASA says human-in-the-loop testing can reveal design flaws and technical problems, and can lead to cost-efficient improvements. In addition, it can elevate the design process from 2D to 3D modeling.

Intuitive Machines says the testing “proved invaluable.” NASA astronauts served as test subjects who provided feedback about the Moon RACER’s functionality.

The Moon RACER, featuring a rechargeable electric battery and a robotic arm, will be able to accommodate two astronauts and more than 880 pounds of cargo. It’s being designed to pull a trailer loaded with more than 1,760 pounds of cargo.

Another Houston company, Venus Aerospace, recently achieved ignition of its VDR2 rocket engine. The engine, being developed in tandem with Ohio-based Velontra — which aims to produce hypersonic planes — combines the functions of a rotating detonation rocket engine with those of a ramjet.

A rotating detonation rocket engine, which isn’t equipped with moving parts, rapidly burns fuel via a supersonic detonation wave, according to the Air Force Research Laboratory. In turn, the engine delivers high performance in a small volume, the lab says. This savings in volume can offer range, speed, and affordability benefits compared with ramjets, rockets, and gas turbines.

A ramjet is a type of “air breathing” jet engine that does not include a rotary engine, according to the SKYbrary electronic database. Instead, it uses the forward motion of the engine to compress incoming air.

A ramjet can’t function at zero airspeed, so it can’t power an aircraft during all phases of flight, according to SKYbrary. Therefore, it must be paired with another kind of propulsion, such as a rotating detonation rocket engine, to enable acceleration at a speed where the ramjet can produce thrust.

“With this successful test and ignition, Venus Aerospace has demonstrated the exceptional ability to start a [ramjet] at takeoff speed, which is revolutionary,” the company says.

Venus Aerospace plans further testing of its engine in 2025.

Venus Aerospace, recently achieved ignition of its VDR2 rocket engine. Photo courtesy of Venus Aerospace

METRO rolls out electric shuttles for downtown Houston commuters

on a roll

The innovative METRO microtransit program will be expanding to the downtown area, the Metropolitan Transit Authority of Harris County announced on Monday.

“Microtransit is a proven solution to get more people where they need to go safely and efficiently,” Houston Mayor John Whitmire said in a statement. “Connected communities are safer communities, and bringing microtransit to Houston builds on my promise for smart, fiscally-sound infrastructure growth.”

The program started in June 2023 when the city’s nonprofit Evolve Houston partnered with the for-profit Ryde company to offer free shuttle service to residents of Second and Third Ward. The shuttles are all-electric and take riders to bus stops, medical buildings, and grocery stores. Essentially, it works as a traditional ride-share service but focuses on multiple passengers in areas where bus access may involve hazards or other obstacles. Riders access the system through the Ride Circuit app.

So far, the microtransit system has made a positive impact in the wards according to METRO. This has led to the current expansion into the downtown area. The system is not designed to replace the standard bus service, but to help riders navigate to it through areas where bus service is more difficult.

“Integrating microtransit into METRO’s public transit system demonstrates a commitment to finding innovative solutions that meet our customers where they are,” said METRO Board Chair Elizabeth Gonzalez Brock. “This on-demand service provides a flexible, easier way to reach METRO buses and rail lines and will grow ridership by solving the first- and last-mile challenges that have hindered people’s ability to choose METRO.”

The City of Houston approved a renewal of the microtransit program in July, authorizing Evolve Houston to spend $1.3 million on it. Some, like council member Letitia Plummer, have questioned whether microtransit is really the future for METRO as the service cuts lines such as the University Corridor.

However, the microtransit system serves clear and longstanding needs in Houston. Getting to and from bus stops in the city with its long blocks, spread-out communities, and fickle pedestrian ways can be difficult, especially for poor or disabled riders. While the bus and rail work fine for longer distances, shorter ones can be underserved.

Even in places like downtown where stops are plentiful, movement between them can still involve walks of a mile or more, and may not serve for short trips.

“Our microtransit service is a game-changer for connecting people, and we are thrilled to launch it in downtown Houston,” said Evolve executive director Casey Brown. “The all-electric, on-demand service complements METRO’s existing fixed-route systems while offering a new solution for short trips. This launch marks an important milestone for our service, and we look forward to introducing additional zones in the new year — improving access to public transit and local destinations.”

———

This article originally ran on CultureMap.