From a locally sourced meal service company to stem cell research and a balance measuring device, this week's innovators are ones to know in the health industry. Courtesy photos

More and more Americans are focusing on their health, from eating right to experimenting with new treatments or devices. These three Houston innovators are riding the coattails of this health-focused movement with their startups. With advances in technology and the movement only growing faster and faster, you'd better keep your eye on these Houston innovators.

Marla Murphy, founder of The Blonde Pantry

Courtesy of The Blonde Pantry

Marla Murphy didn't feel like she was doing enough to promote health and wellness with her platform, The Blonde Pantry. So, she expanded it to incorporate locally sourced produce and easy-to-make recipes she gets ready every weekend to deliver to her members by Monday.

"It's not about selling meals and moving on, I want this to be a lifestyle company that is really founded and has deep roots in Houston," says Murphy in a InnovationMap story.

Murphy tells InnovationMap that in the next year she hopes to expand into the retail space and find a bigger commercial kitchen to function as their own. She also hopes to partner with companies outside of food and continue to nourish lives in someway.

David Eller, chairman, co-founder and CEO of Celltex

Courtesy of Celltex

Stem cell treatment is personal to David Eller, chairman, co-founder and CEO of Celltex. Eller had the treatment in hopes of resolving pain from a college football injury.

"I would go to work and put four to six Advil in my pocket," Eller says in an InnovationMap story about Celltex's technology. Within months, he stopped needing those pills.

Houston-based Celltex tracks its progress with its patients. Eighty-three percent of multiple sclerosis patients have reported improvement of symptoms specific to their disease, as have 73 percent of Parkinson's sufferers. But the staggering fact is that 100 percent of 58 respondents with rheumatoid arthritis say they have benefited.

Katharine Forth, founder and CEO of Zibrio

Courtesy of Zibrio

Katharine Forth has used a technology she developed with her colleague at NASA to measure balance in astronauts to create a device that any terrestrial human can now use from the comfort of their own homes.

"The machines typically used for balance measurement can be as large as a telephone booth, so we invented a new way to measure postural control using a much smaller mechanism that fit inside a moon boot," Forth says in an InnovationMap article about Zibrio, The Balance Company. Zibrio, The Balance Company.

Zibrio is now a finalist for the 2019 SXSW Pitch in the health and wearables category and will take its balance technology to the stage in March.

Celltex's stem cell technology has received positive results from its multiple sclerosis, Parkinson's, and rheumatoid arthritis patients. Courtesy of Celltex

Houston company uses stem cell technology to treat patients suffering from degenerative diseases

Regeneration nation

The medical community has former governor Rick Perry to thank for a major stride in regenerative medicine.

"He had just gotten elected for the last time and he wanted to leave a legacy. He was tired of people going to Japan or Germany when they needed stem cells," recalls David Eller, chairman, co-founder and CEO of Celltex.

That was 2011, the year that the former president of Dupont Pharmeceuticals-Europe and orthopedic surgeon Dr. Stanley Jones incorporated as Celltex. Perry got the law passed to make it legal to harvest his stem cells, and Jones implanted them while the governor was under the knife for a spinal fusion surgery.

Perry resigned from the Celltex board in 2017, but the truth is, the company no longer needed his clout. Just a year after its debut, the company had in excess of 200 clients, each paying a banking enrollment fee of $6,500. Now, there are close to 1,300.

From research to recovery
Eller is originally from Houston, and he says his hometown is the ideal home base for the company, with its access to the world's largest medical center. The Galleria-area office and lab employ 35 people, with about 50 workers worldwide.

Close to the same time that his friend Perry received his stem cells, Eller also had the treatment in hopes of resolving pain from a college football injury.

"I would go to work and put four to six Advil in my pocket," the CEO recalls.

Within months, all of them remained in his pocket.

But others have had even more dramatic results. Celltex checks in with patients three, six and nine months after their treatments to find out how they're doing. Eighty-three percent of multiple sclerosis patients have reported improvement of symptoms specific to their disease, as have 73 percent of Parkinson's sufferers. But the staggering fact is that 100 percent of 58 respondents with rheumatoid arthritis say they have benefited.

Implementation and the FDA
Celltex's chief scientific officer, Dr. Jane Young, co-authored a study of two severe juvenile rheumatoid arthritis patients whose conditions didn't respond to standard treatments. After trying stem cells, both reported marked improvement in autonomic nervous system and immune function.

Stem cells are gathered through a patient's fat, which can be extracted at any of the 80 facilities around the country that partner with Celltex. The fat is processed at the Houston lab, where processing takes 30 to 35 days.

"We have 15 billion cells in process each day," says Erik Eller, the company's vice president of operations, clarifying that some clients' cells grow faster than others'.

It takes 14 days to come out of cryostasis and leave the lab. From there, the stem cells travel to Hospital Galenia in Cancun, Mexico for implantation, since the FDA categorizes stem cells as a drug if they have expanded as they do at Celltex. That means that a patient cannot use his own stem cells in the United States without a clinical trial. To circumnavigate the red tape, Celltex has simply partnered with the luxurious Mexican hospital.

This is currently the company's biggest challenge, says David Eller, but one he expects to overcome.

"We have very good relations with the US FDA," he says. "They are very interested in what we know. Our approach is really is very progressive and we've grown every year."

Ultimately, Eller hopes to be able to implant stem cells in the United States. But the company's foreign growth is a good start. Celltex is now operating in the Bahamas and is hoping to add Australian extraction facilities sometime this year. They are also in negotiations with a team from Saudi Arabia interested in expanding Celltex to the Middle East.

Other goals for Celltex include improvements both in the realms of sales and revenue and streamlining and improving the safety and efficacy of treatment. Research collaborations with Baylor College of Medicine and Texas A&M will help with the company's medical credibility. This all may help to convince the FDA to allow the Celltex to get a biologics license, the final proof that it is not a drug company. But no matter how it's categorized, Celltex is growing exponentially as its cells.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston doctor wins NIH grant to test virtual reality for ICU delirium

Virtual healing

Think of it like a reverse version of The Matrix. A person wakes up in a hospital bed and gets plugged into a virtual reality game world in order to heal.

While it may sound far-fetched, Dr. Hina Faisal, a Houston Methodist critical care specialist in the Department of Surgery, was recently awarded a $242,000 grant from the National Institute of Health to test the effects of VR games on patients coming out of major surgery in the intensive care unit (ICU).

The five-year study will focus on older patients using mental stimulation techniques to reduce incidences of delirium. The award comes courtesy of the National Institute on Aging K76 Paul B. Beeson Emerging Leaders Career Development Award in Aging.

“As the population of older adults continues to grow, the need for effective, scalable interventions to prevent postoperative complications like delirium is more important than ever,” Faisal said in a news release.

ICU delirium is a serious condition that can lead to major complications and even death. Roughly 87 percent of patients who undergo major surgery involving intubation will experience some form of delirium coming out of anesthesia. Causes can range from infection to drug reactions. While many cases are mild, prolonged ICU delirium may prevent a patient from following medical advice or even cause them to hurt themselves.

Using VR games to treat delirium is a rapidly emerging and exciting branch of medicine. Studies show that VR games can help promote mental activity, memory and cognitive function. However, the full benefits are currently unknown as studies have been hampered by small patient populations.

Faisal believes that half of all ICU delirium cases are preventable through VR treatment. Currently, a general lack of knowledge and resources has been holding back the advancement of the treatment.

Hopefully, the work of Faisal in one of the busiest medical cities in the world can alleviate that problem as she spends the next half-decade plugging patients into games to aid in their healing.

Houston scientists develop breakthrough AI-driven process to design, decode genetic circuits

biotech breakthrough

Researchers at Rice University have developed an innovative process that uses artificial intelligence to better understand complex genetic circuits.

A study, published in the journal Nature, shows how the new technique, known as “Combining Long- and Short-range Sequencing to Investigate Genetic Complexity,” or CLASSIC, can generate and test millions of DNA designs at the same time, which, according to Rice.

The work was led by Rice’s Caleb Bashor, deputy director for the Rice Synthetic Biology Institute and member of the Ken Kennedy Institute. Bashor has been working with Kshitij Rai and Ronan O’Connell, co-first authors on the study, on the CLASSIC for over four years, according to a news release.

“Our work is the first demonstration that you can use AI for designing these circuits,” Bashor said in the release.

Genetic circuits program cells to perform specific functions. Finding the circuit that matches a desired function or performance "can be like looking for a needle in a haystack," Bashor explained. This work looked to find a solution to this long-standing challenge in synthetic biology.

First, the team developed a library of proof-of-concept genetic circuits. It then pooled the circuits and inserted them into human cells. Next, they used long-read and short-read DNA sequencing to create "a master map" that linked each circuit to how it performed.

The data was then used to train AI and machine learning models to analyze circuits and make accurate predictions for how untested circuits might perform.

“We end up with measurements for a lot of the possible designs but not all of them, and that is where building the (machine learning) model comes in,” O’Connell explained in the release. “We use the data to train a model that can understand this landscape and predict things we were not able to generate data on.”

Ultimately, the researchers believe the circuit characterization and AI-driven understanding can speed up synthetic biology, lead to faster development of biotechnology and potentially support more cell-based therapy breakthroughs by shedding new light on how gene circuits behave, according to Rice.

“We think AI/ML-driven design is the future of synthetic biology,” Bashor added in the release. “As we collect more data using CLASSIC, we can train more complex models to make predictions for how to design even more sophisticated and useful cellular biotechnology.”

The team at Rice also worked with Pankaj Mehta’s group in the department of physics at Boston University and Todd Treangen’s group in Rice’s computer science department. Research was supported by the National Institutes of Health, Office of Naval Research, the Robert J. Kleberg Jr. and Helen C. Kleberg Foundation, the American Heart Association, National Library of Medicine, the National Science Foundation, Rice’s Ken Kennedy Institute and the Rice Institute of Synthetic Biology.

James Collins, a biomedical engineer at MIT who helped establish synthetic biology as a field, added that CLASSIC is a new, defining milestone.

“Twenty-five years ago, those early circuits showed that we could program living cells, but they were built one at a time, each requiring months of tuning,” said Collins, who was one of the inventors of the toggle switch. “Bashor and colleagues have now delivered a transformative leap: CLASSIC brings high-throughput engineering to gene circuit design, allowing exploration of combinatorial spaces that were previously out of reach. Their platform doesn’t just accelerate the design-build-test-learn cycle; it redefines its scale, marking a new era of data-driven synthetic biology.”