As a researcher, what is more important to you than a record of your research and scholarship? A Digital Persistent Identifier, or DPI, distinguishes you and your work from that of your peers. Graphic by Miguel Tovar/University of Houston

Every researcher needs a Digital Persistent Identifier.

As a researcher, what is more important to you than a record of your research and scholarship? A Digital Persistent Identifier, or DPI, distinguishes you and your work from that of your peers – and having one will be mandated for those receiving federal funding. Let’s take a deeper look at why this number is so important. We’ll also compare the different platforms— ORCID, Web of Science, Scopus and Google Scholar — so that you can be sure your publications, presentations, peer reviews and even information about who is citing you are being properly stored and accessed.

ORCID

There are many types of profiles and DPIs that can meet your needs, but there’s no silver bullet. Placing your work onto multiple platforms is necessary according to Andrea Malone, Research Visibility and Impact Coordinator at UH Libraries. She cautions researchers to “be realistic about how many identifiers you can maintain.”

The most popular is ORCID, which stands for Open Researcher and Contributor ID. It’s free to set up, and there is no chance of accidentally or on-purpose having multiple ORCID accounts – it’s assigned to you like a social security number and follows you, the researcher. This comes in particularly especially handy for researchers with common names.

An identifier is federally mandated for those receiving governmental funds. It is not specified that ORCID must be that identifier. For example, according to Malone: “a Web of Science profile also assigns an identifier, which would also satisfy the mandate.” But most researchers choose ORCID because it’s publicly available with no access restrictions.

While an ORCID number is free for researchers, there is a subscription fee for an institution to be associated with ORCID. Information will not pre-populate in an ORCID profile and it doesn’t track citation counts – it only shows what you put in. There are, however, linking wizards that allow you to link from Web of Science and Scopus to your ORCID account. If you choose this option, citations will automatically populate in your ORCID profile. It’s up to the researcher to doublecheck to be sure the information has automated, however.

Google Scholar

Google Scholar is a profile, not an identifier, so it does not comply with federal funding requirements. It is free, however, and it pulls from the open web. You can choose to have your list of articles updated automatically, review the updates yourself or manually update your articles at any time. Google Scholar also specifies which articles are open access. A PDF or HTML icon will appear on the righthand side of each citation for one to download articles.

Web of Science Vs. Scopus

Scopus is known for covering more journals and a wider range of metrics to evaluate research impact than Web of Science. Different platforms are a go-to for certain disciplines – for example, Web of Science is usually associated with hard sciences, although investigators in the social sciences and humanities also place their work on this platform from time to time. It’s a good idea to check out which platforms others in your discipline are using for their profiles.

Staying up-to-date

Of course, DPIs don’t work as intended unless researchers keep their profiles current. That means you need to check your profile after every publication and every time you switch to a new institution. Just as you would update your CV, you must update your ORCID or other DPI profile.

One tactic Malone suggests is setting a schedule either biweekly or monthly to check all your profiles. “One thing that’s helpful is that with all of them, you can set up alerts and create an alert as often as you want,” Malone goes on. “At that time, the program will scrawl the content within the source and alert you to anytime any of your publications appear in their database.”

The Big Idea

No one tool can paint a complete picture of all your scholarship. Be strategic and intentional about which platforms you use. Consider your audience, the platforms others in your discipline use and make sure you have an ORCID profile to comply with the federal mandate. But be careful not to sign up for more than you can feasibly maintain and keep current.

------

This article originally appeared on the University of Houston's The Big Idea. Sarah Hill, the author of this piece, is the communications manager for the UH Division of Research.


Nai-Hui Chia, an assistant professor of computer science at Rice, was recognized for his research on Hamiltonian simulations, a method for representing the motion of moving particles. Photo via Rice.edu

Houston professor earns Google Scholar award for quantum computing research

recent recognition

A Rice University quantum computer scientist was one of 78 global professors to be presented with a 2023 Google Scholar award, the university announced this month.

Nai-Hui Chia, an assistant professor of computer science at Rice, was recognized for his research on Hamiltonian simulations, a method for representing the motion of moving particles. Chia aims to understand if quantum computers or machines can simulate a "Hamiltonian matrix" with a shorter evolution time.

"We call this fast-forwarding for a Hamiltonian simulation,” Chia says in a statement.

Chia aims to use the funds from Google to discover Hamiltonians that can be fast-forwarded using parallelism or classical computation, according to Rice. He will present his current work on Hamiltonians and their connection to cryptology in July at the 2023 Computational Complexity Conference in Warwick, UK.

The Google Research Scholar program grants funds of up to $60,000 to support professors' research around the world. This year's cohort works in fields ranging from algorithms and optimization to natural language processing to health research.

Three other Texas researchers were awarded funds in the 2023 cohort.

The University of Texas at Austin's Jon Tamir was awarded for his work in applied sciences. Atlas Wang, also from UT, was awarded in the machine learning and data mining category. Shenglong Xu, from Texas A&M University, joined Chia in the quantum computing category.

Tech behemoth Google has awarded funds to several Houston innovators in recent years.

Last summer the company named AnswerBite, Boxes and Ease to its inaugural cohort of the Google for Startups Latino Founders Fund. Selected companies received an equity-free $100,000 investment, as well as programming and support from Google.

In September 2022, ChurchSpace and Enrichly were named part of the Google for Startups Black Founders Fund. The companies also received $100,000 non-dilutive awards along with mentoring and support.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston robotics co. unveils new robot that can handle extreme temperatures

Hot New Robot

Houston- and Boston-based Square Robot Inc.'s newest tank inspection robot is commercially available and certified to operate at extreme temperatures.

The new robot, known as the SR-3HT, can operate from 14°F to 131°F, representing a broader temperature range than previous models in the company's portfolio. According to the company, its previous temperature range reached 32°F to 104°F.

The new robot has received the NEC/CEC Class I Division 2 (C1D2) certification from FM Approvals, allowing it to operate safely in hazardous locations and to perform on-stream inspections of aboveground storage tanks containing products stored at elevated temperatures.

“Our engineering team developed the SR-3HT in response to significant client demand in both the U.S. and international markets. We frequently encounter higher temperatures due to both elevated process temperatures and high ambient temperatures, especially in the hotter regions of the world, such as the Middle East," David Lamont, CEO of Square Robot, said in a news release. "The SR-3HT employs both active and passive cooling technology, greatly expanding our operating envelope. A great job done (again) by our engineers delivering world-leading technology in record time.”

The company's SR-3 submersible robot and Side Launcher received certifications earlier this year. They became commercially available in 2023, after completing initial milestone testing in partnership with ExxonMobil, according to Square Robot.

The company closed a $13 million series B round in December, which it said it would put toward international expansion in Europe and the Middle East.

Square Robot launched its Houston office in 2019. Its autonomous, submersible robots are used for storage tank inspections and eliminate the need for humans to enter dangerous and toxic environments.

---

This article originally appeared on EnergyCapitalHTX.com.

Houston's Ion District to expand with new research and tech space, The Arc

coming soon

Houston's Ion District is set to expand with the addition of a nearly 200,000-square-foot research and technology facility, The Arc at the Ion District.

Rice Real Estate Company and Lincoln Property Company are expected to break ground on the state-of-the-art facility in Q2 2026 with a completion target set for Q1 2028, according to a news release.

Rice University, the new facility's lead tenant, will occupy almost 30,000 square feet of office and lab space in The Arc, which will share a plaza with the Ion and is intended to "extend the district’s success as a hub for innovative ideas and collaboration." Rice research at The Arc will focus on energy, artificial intelligence, data science, robotics and computational engineering, according to the release.

“The Arc will offer Rice the opportunity to deepen its commitment to fostering world-changing innovation by bringing our leading minds and breakthrough discoveries into direct engagement with Houston’s thriving entrepreneurial ecosystem,” Rice President Reginald DesRoches said in the release. “Working side by side with industry experts and actual end users at the Ion District uniquely positions our faculty and students to form partnerships and collaborations that might not be possible elsewhere.”

Developers of the project are targeting LEED Gold certification by incorporating smart building automation and energy-saving features into The Arc's design. Tenants will have the opportunity to lease flexible floor plans ranging from 28,000 to 31,000 square feet with 15-foot-high ceilings. The property will also feature a gym, an amenity lounge, conference and meeting spaces, outdoor plazas, underground parking and on-site retail and dining.

Preleasing has begun for organizations interested in joining Rice in the building.

“The Arc at the Ion District will be more than a building—it will be a catalyst for the partnerships, innovations and discoveries that will define Houston’s future in science and technology,” Ken Jett, president of Rice Real Estate Company, added in the release. “By expanding our urban innovation ecosystem, The Arc will attract leading organizations and talent to Houston, further strengthening our city’s position as a hub for scientific and entrepreneurial progress.”

Intel Corp. and Rice University sign research access agreement

innovation access

Rice University’s Office of Technology Transfer has signed a subscription agreement with California-based Intel Corp., giving the global company access to Rice’s research portfolio and the opportunity to license select patented innovations.

“By partnering with Intel, we are creating opportunities for our research to make a tangible impact in the technology sector,” Patricia Stepp, assistant vice president for technology transfer, said in a news release.

Intel will pay Rice an annual subscription fee to secure the option to evaluate specified Rice-patented technologies, according to the agreement. If Intel chooses to exercise its option rights, it can obtain a license for each selected technology at a fee.

Rice has been a hub for innovation and technology with initiatives like the Rice Biotech Launch Pad, an accelerator focused on expediting the translation of the university’s health and medical technology; RBL LLC, a biotech venture studio in the Texas Medical Center’s Helix Park dedicated to commercializing lifesaving medical technologies from the Launch Pad; and Rice Nexus, an AI-focused "innovation factory" at the Ion.

The university has also inked partnerships with other tech giants in recent months. Rice's OpenStax, a provider of affordable instructional technologies and one of the world’s largest publishers of open educational resources, partnered with Microsoft this summer. Google Public Sector has also teamed up with Rice to launch the Rice AI Venture Accelerator, or RAVA.

“This agreement exemplifies Rice University’s dedication to fostering innovation and accelerating the commercialization of groundbreaking research,” Stepp added in the news release.