FibroBiologics has opened a new 10,000-square-foot Houston lab to scale up research efforts and pave the way for in-house manufacturing. Photo via Fibrobiologics.com

A Houston regenerative medicine company has unveiled new laboratory space with the goal of expanding its pioneering science.

FibroBiologics uses fibroblasts, the body’s most common type of cell, rather than stem cells, to help grow new cells. Fibroblasts are the primary variety of cells that compose connective tissue. FibroBiologics has found in studies that fibroblasts can be even more powerful than stem cells when it comes to both regeneration and immune modulation, meaning they could be a more versatile way forward in those fields.

In 2023, FibroBiologics moved into new lab space in the UH Technology Bridge. Now, with its new space, the publicly traded company, which has more than 240 patents issued or pending, will be even better equipped to power forward with its research.

The new space includes more than 10,000 square feet of space devoted to both labs and offices. The location is large enough to also house manufacturing drug product candidates that will be used in upcoming trials. Additionally, the company reports that it plans to hire additional researchers to help staff the facility.

“This expansion marks a transformative step forward for our company and our mission,” Pete O’Heeron, FibroBiologics founder and CEO, said in a news release. “By significantly increasing the size of our lab, we are creating the space and infrastructure needed to foster greater innovation and accelerate scientific breakthroughs.”

The streamlined, in-house manufacturing process will reduce the company’s reliance on external partners and make the supply chain simpler, O’Heeron added in the release.

Hamid Khoja, the chief scientific officer for FibroBiologics, also chimed in.

“To date, our progress in developing potentially transformative therapeutic candidates for chronic diseases using fibroblasts has been remarkable,” he added in the release. “This new laboratory facility will enable further expansion and acceleration of our research and development efforts. Additionally, the expansive new space will enable us to bring in-house currently outsourced projects, expand our science team and further contribute to the increased efficiency of our R&D efforts.”

This news arrives shortly after a milestone for the company in its research about neurodegenerative disease. Last month, fibroblast treatments in an animal model study demonstrated a notable regeneration of the myelin sheath, the layer that insulates nerves and is worn down by disease.

“Confirming remyelination in a second validated animal model is an important step in our research and development efforts, offering fresh hope for patients with demyelinating diseases, including multiple sclerosis,” O’Heeron added in a separate release. “These findings advance our mission to develop transformative fibroblast-based therapies that address the root causes of chronic disease, not just their symptoms, and reflect our dedication to pushing the frontiers of regenerative medicine."

FibroBiologics will IPO this week. Photo via Getty Images

Houston regenerative medicine company to IPO, move toward more human trials

ready to list

Want a piece of one of Houston’s most promising biotech companies? On January 31, FibroBiologics will begin the trading of its common stock on the Nasdaq stock exchange.

While most labs in the realm of regenerative medicine are focused on stem cells, FibroBiologics has bet on fibroblasts as the secret to treating myriad ailments. Fibroblasts, the most common type of cell in the body, are the primary cells that compose connective tissue.

Interested investors can find a prospectus to peruse before taking the leap. FibroBiologics filed with the U.S. Securities & Exchange Commission (SEC) on November 7, 2023. In September, FibroBiologics CEO Pete O’Heeron told InnovationMap, “I think what we're going to see is that fibroblasts are going to end up winning... They're just a better overall cell than the stem cells.”

O’Heeron was first exposed to the possibilities of fibroblasts as a means of regrowing discs in the spine. Since starting the company in 2008 as SpinalCyte, O’Heeron and FibroBiologics have organically written and filed more than 320 patents. Potential treatments go far beyond spinal surgery to include wound care, cancer, and multiple sclerosis.

According to O’Heeron, the goal in going public is to raise capital for human trials.

“We’ve had really fantastic results with animals and now we’re ready for humans,” he explained in September. “We've done small human trials, but we haven't done the large ones that are going to get the commercialization approval from the FDA.”

FibroBiologics is growing with impressive speed. O’Heeron told us that he is hiring as quickly as he is able to find qualified scientists with the expertise to do the one-of-a-kind work required. The company opened a new lab last fall at the UH Technology Bridge, Newlin-Linscomb Lab for Cell Therapies. With its new status as a publicly traded company, FibroBiologics is primed to break even more ground.

FibroBiologics is opening a unique new lab at the University of Houston's Technology Bridge. Photo by Natalie Harms/InnovationMap

Houston regenerative medicine company opens new lab at UH

cell therapy innovation

Pete O’Heeron wants you to know that “Bohemian Rhapsody” was originally released as a B-side. What does this nugget about Queen have to do with regenerative medicine? For O’Heeron and his company, FibroBiologics, it means everything.

That’s because most scientists consider stem cells the A-side when it comes to the race to curing disease. But FibroBiologics has set its sights on fibroblasts. The most common cell in the body, fibroblasts are the main cell type in connective tissue.

“Everyone was betting on stem cells, and we started betting on fibroblasts,” says O’Heeron, who started the company in 2008 as SpinalCyte. “I think what we're going to see is that fibroblasts are going to end up winning, there are more robust, more that are lower cost cell, they have higher therapeutic values, higher immune modulation. They're just a better overall cell than the than the stem cells.”

Since a neurosurgeon and a dermatologist first introduced O’Heeron to the idea of using fibroblasts to regrow discs in the spine, the company has expanded its reach to include promising treatments for multiple sclerosis and cancer and in wound care. Imagine a world where doctors lay fibroblasts directly onto surgical incisions after surgery, cutting the time for healing in half.

FibroBiologics has organically written and filed more than 320 patents.

“It's quite a unique situation. I don’t think that in other areas of science that you have such a wide open area to go out and patent. It's just it was a brand new area nobody had been working on,” O’Heeron explains.

And soon, investors will be able to own a stake in the impressive work being forged in Houston. FibroBiologics, previously FibroGenesis, was formed in order to go public in a direct NASDAQ listing. The goal is to access the capital necessary to go to human trials. Earlier this year, the company also launched a crowdfunding campaign.

“We’ve had really fantastic results with animals and now we’re ready for humans,” says O’Heeron. “We've done small human trials, but we haven't done the large ones that are going to get the commercialization approval from the FDA.”

With that in mind, the company just signed a deal with University of Houston’s Innovation Center. On Thursday, September 7, FibroBiologics will dedicate the Newlin-Linscomb Lab for Cell Therapies in the UH Technology Bridge. The new lab is named for former player and color commentator for the Houston Rockets, Mike Newlin and his wife, Cindy, as well as Pam and Dan Linscomb, a founding partner of Kuhl-Linscomb, one of the largest wealth management companies in Houston.

Other big local names newly attached to the company are astronaut Kate Rubins and Elizabeth Shpall, the director of the cell therapy laboratory at MD Anderson Cancer Center. Both have joined FibroBiologics as members of its scientific advisory board.

To fill the lab, O’Heeron says that he is adding to his team as quickly as he is able. The barrier is the fact that there are few, if any people in the world with the exact qualifications he’s seeking.

“Anytime you're breaking new scientific ground, you can't really just go out and recruit someone with that background because it really doesn't exist,” he says. But he is willing to teach and challenge scientists who are the right fit, and is hoping to expand the team in the new lab.

But like Queen did in 1975, FibroBiologics is pioneering a category of its own. And that’s something worth betting on.

You can now hop online and invest in this promising cell therapy startup. Photo via Getty Images

Houston biopharma company launches equity crowdfunding campaign

money moves

A clinical-stage company headquartered in Houston has opened an online funding campaign.

FibroBiologics, which is developing fibroblast cell-based therapeutics for chronic diseases, launched a campaign with equity crowdfunding platform StartEngine. The platform lets anyone — regardless of their net worth or income level — to invest in securities issued by startups.

The funding, according to a press release, will be used to support ongoing operations of Fibrobiologics and advance its clinical programs in multiple sclerosis, degenerative disc disease, wound care, extension of life, and cancer.

"We're excited to partner with StartEngine on this campaign. StartEngine has over 600,000 investors as part of their community and has raised over half a billion dollars for its clients," says FibroBiologics' Founder and CEO Pete O'Heeron, in the release.

"This is an exciting time at FibroBiologics as we continue progressing our clinical pipeline and developing innovative therapies to treat chronic diseases," he continues. "This new funding will fuel our growth in the lab and bring us one step closer to commercialization."

The campaign, launched this week, already has over 100 investors, at the time of publication, and has raised nearly $2 million, according to the page. The minimum investment is set at around $500, and the company's indicated valuation is $252.57 million.

In 2021, FibroBiologics announced its intention of going public. Last year, O'Heeron told InnovationMap on the Houston Innovators Podcast of the company's growth plans as well as the specifics of the technology.

Only two types of cells — stem cells and fibroblasts — can be used in cell therapy for a regenerative treatment, which is when specialists take healthy cells from a patient and inject them into a part of the body that needs it the most. As O'Heeron explains in the podcast, fibroblasts can do it more effectively and cheaper than stem cells.

"(Fibroblasts) can essentially do everything a stem cell can do, only they can do it better," says O'Heeron. "We've done tests in the lab and we've seen them outperform stem cells by a low of 50 percent to a high of about 220 percent on different disease paths."


Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Nominations are now open for the 2025 Houston Innovation Awards

Calling All Innovators

Calling all Houston innovators: The Houston Innovation Awards return this fall to celebrate the best and brightest in the Houston innovation ecosystem right now.

Presented by InnovationMap, the fifth annual Houston Innovation Awards will take place November 5 at TMC Helix Park.

The awards program will honor the top startups and innovators in Houston across 10 categories, and we're asking you to nominate the most deserving Houston innovators and innovative companies today.

This year's categories are:

  • Minority-founded Business, honoring an innovative startup founded or co-founded by BIPOC or LGBTQ+ representation.
  • Female-founded Business, honoring an innovative startup founded or co-founded by a woman.
  • Energy Transition Business, honoring an innovative startup providing a solution within renewables, climatetech, clean energy, alternative materials, circular economy, and beyond.
  • Health Tech Business, honoring an innovative startup within the health and medical technology sectors.
  • Deep Tech Business, honoring an innovative startup providing technology solutions based on substantial scientific or engineering challenges, including those in the AI, robotics, and space sectors.
  • Startup of the Year (People's Choice), honoring a startup celebrating a recent milestone or success. The winner will be selected by the community via an interactive voting experience.
  • Scaleup of the Year, honoring an innovative later-stage startup that's recently reached a significant milestone in company growth.
  • Incubator/Accelerator of the Year, honoring a local incubator or accelerator that is championing and fueling the growth of Houston startups.
  • Mentor of the Year, honoring an individual who dedicates their time and expertise to guide and support budding entrepreneurs.
  • Trailblazer, honoring an innovator who's made a lasting impact on the Houston innovation community.

Nominations may be made on behalf of yourself, your organization, and other leaders in the local innovation scene. The nomination period closes on August 31, so don't delay — nominate today at this link, or fill out the embedded form below.

Our panel of esteemed judges will review the nominations, and determine the finalists and winners. Finalists will be unveiled on September 30, and the 2025 Houston Innovation Awards winners will be announced live at our event on November 5.

Tickets will go on sale this fall. Stay tuned for that announcement, as well as more fanfare leading up to the 2025 Houston Innovation Awards.

Nominate now:

Interested in Innovation Awards sponsorship opportunities? Please contact sales@innovationmap.com.

MD Anderson launches $10M collaboration to advance personalized cancer treatment tech

fighting cancer

The University of Texas MD Anderson Cancer Center and Japan’s TOPPAN Holdings Inc. have announced a strategic collaboration to co-develop TOPPAN Holdings’ 3D cell culture, or organoid, technology known as invivoid.

The technology will be used as a tool for personalized cancer treatments and drug screening efforts, according to a release from MD Anderson. TOPPAN has committed $10 million over five years to advance the joint research activities.

“The strategic alliance with MD Anderson paves a promising path toward personalized cancer medicine," Hiroshi Asada, head of the Business Innovation Center at TOPPAN Holdings, said in a news release.

Invivoid is capable of establishing organoid models directly from patient biopsies or other tissues in a way that is faster and more efficient. Researchers may be able to test a variety of potential treatments in the laboratory to understand which approach may work best for the patient, if validated clinically.

“Organoids allow us to model the three-dimensional complexity of human cancers in the lab, thus allowing us to engineer a powerful translational engine—one that could not only predict how patients will respond to therapy before treatment begins but also could help to reimagine how we discover and validate next-generation therapies," Dr. Donna Hansel, division head of pathology and laboratory medicine at MD Anderson, added in the news release. “Through this collaboration, we hope to make meaningful progress in modeling cancer biology for therapeutic innovation.”

The collaboration will build upon preclinical research previously conducted by MD Anderson and TOPPAN. The organizations will work collaboratively to obtain College of American Pathologists (CAP) and Clinical Laboratory Improvement Amendments (CLIA) certifications for the technology, which demonstrate a commitment to high-quality patient care. Once the certifications are obtained, they plan to conduct observational clinical studies and then prospective clinical studies.

“We believe our proprietary invivoid 3D cell culture technology, by enabling the rapid establishment of organoid models directly from patient biopsies, has strong potential to help identify more effective treatment options and reduce the likelihood of unnecessary therapies,” Asada added in the release. “Through collaboration on CAP/CLIA certification and clinical validation, we aim to bring this innovation closer to real-world patient care and contribute meaningfully to the advancement of cancer medicine."