CompuCycle reports that it's the only service provider in the country that can provide a recycling solution for both metals and plastics in-house. Courtesy of CompuCycle

An innovative Houston company focused on sustainable tech recycling has expanded.

CompuCycle describes its unique Plastics Recycling System as the first and only certified, single solution e-waste recycling business. The company's unique process can now break down discarded technology products into single polymers that can then be reused in the manufacturing process.

“Properly managing all components of electronics is a cornerstone of sustainability and environmental responsibility,” Kelly Adels Hess, CEO of CompuCycle, says in a news release. “Making single polymer plastics that original equipment manufacturers (OEMs) can reuse to produce new electronics or other products, while adhering to international recycling standards, is a gamechanger for domestic companies and those that need their plastics shipped globally.”

As of now, CompuCycle reports that it's the only service in the country that can provide a recycling solution for both metals and plastics in-house. The company has met the Environmental Protection Agency’s two accredited certification standards, e-Stewards and R2 certification requirements, per the release.

“We saw an opportunity to solve an industry challenge by creating the first domestic, sustainable, single-solution e-waste plastics program that reduces the amount of plastic negatively impacting the environment, while also making it advantageous for companies to recycle and reuse. It’s truly a win for everyone involved,” adds Clive Hess, president at CompuCycle.

CompuCycle, which has over a 20-year history, added recycling electronics to its toolkit in 2019. While CompuCycle has focused on responsible electronics disposal since Kelly's father-in-law, John Hess, founded the company in 1996, certain recent events have increased the need to recycle more efficiently.

"China is no longer accepting scrap, which is where a lot of materials would go after it was dismantled," Kelly told InnovationMap in 2019. "That's why we've created this solution to be able to responsibly handle it here in the U.S."

------

This article originally ran on EnergyCapital.

The U.S. Justice Department and the federal Environmental Protection Agency have reached an agreement with a Houston company on alleged violations of the federal Clean Air Act. Photo via Getty Images

EPA settles with Houston recycling company over Clean Air Act violations

paying penalties

Officials have reached an agreement with a Houston-based company over alleged violations of the federal Clean Air Act.

Under a proposed settlement with the U.S. Justice Department and the federal Environmental Protection Agency, Derichebourg Recycling USA Inc. will prevent the release of ozone-depleting refrigerants and non-exempt substitutes from refrigerant-containing items at its 10 scrap metal recycling facilities in Texas and Oklahoma. Derichebourg also will pay a $442,500 penalty.

Derichebourg Recycling USA’s parent company is France-based Derichebourg SA, an operator of scrap metal recycling facilities.

A complaint filed in federal court alleges Derichebourg Recycling USA failed to recover refrigerant from appliances and motor vehicle air conditioners before disposal, and failed to verify with the supplier that refrigerant had been properly recovered before delivery.

The complaint focuses on alleged Clean Air Act violations at three Derichebourg scrap metal recycling facilities in Houston: 7501 Wallisville Rd., 8202 W. Montgomery Rd., and 1 Wharf St. Environmental Protection Agency (EPA) inspections in 2018 led to the complaint.

Derichebourg operates three other facilities in the Houston area: 3515 Almeda Genoa Rd. and 6648 N. Eldridge Pkwy., both in Houston, and 13319 FM 1764 in Santa Fe.

“To continue protecting stratospheric ozone, we need companies like Derichebourg to comply with the Clean Air Act when recycling appliances and motor vehicles containing harmful refrigerants,” Todd Kim, an assistant U.S. attorney general, says in a January 7 news release.

The refrigerant, R-12, is one of the most destructive ozone-depleting substances and has a global warming potential greater than 10,000 times the power of carbon dioxide, according to the news release.

“Refrigerants that are not captured properly can be damaging to the earth’s ozone layer and are known to increase greenhouse gasses, which leads to climate change,” says Larry Starfield, acting assistant administrator of the EPA.

The agreement, called a consent decree, still requires approval from a federal judge in Houston. The consent decree is signed by two EPA attorneys and the CEO of Derichebourg Recycling USA, Philippe Leonard.

The City of Houston has held the No. 1 spot on the municipal list since 2014. Photo via Getty Images

Houston continues its reign as the top city using renewables, per the EPA

seeing green

The City of Houston continues to electrify the country when it comes to the use of green power.

The U.S. Environmental Protection Agency (EPA) ranks the city first among municipal entities for the highest annual consumption of power from renewable sources. The list features participants in the EPA's Green Energy Partnership.

The EPA pegs the City of Houston's annual use of green power at a little over 1 billion kilowatt-hours. That's enough electricity to power more than 94,000 average U.S. homes in a year's time. No other municipal entity uses more than 1 billion kilowatt-hours of green power per year.

The City of Houston has held the No. 1 spot on the municipal list since 2014. Among all users of green power in the U.S. that participate in the EPA's Green Energy Partnership, the city ranks 19th.

Since July 2020, all City of Houston facilities have been powered by 100 percent renewable energy derived from solar and wind sources. Houston-based NRG supplies the electricity for those facilities.

In an August 11 news release, Houston Mayor Sylvester Turner says the EPA recognition is "great news for the city of Houston and, by extension, for the rest of the world. We are going big to set the example for cities around the world. If 100 percent renewable energy can happen in Houston, it can happen in any other city."

The news release points out that green power helps offset damage from ozone, acid rain, haze, fine particles, and other harmful pollutants. Fine particles come primarily from exhaust produced by vehicles, as well as from the burning of coal, wood, and heating oil, and from forest fires and grass fires.

The City of Houston isn't the only municipal outfit in Texas that shines on the EPA list. Here's are four others among the top 30 municipal users of green power:

  • City of Dallas, ranked second, 701.8 million kilowatt-hours of green power used each year.
  • Dallas-Fort Worth International Airport, ranked fifth, 450.2 million kilowatt-hours of green power used each year.
  • City of Austin, ranked sixth, 325.3 million kilowatt-hours of green power used each year.
  • City of Irving, ranked 30th, 24.9 million kilowatt-hours of green power used each year.

Nationally, these five Texas businesses rank among the top corporate users of green power:

  • Dallas-based AT&T, ranked seventh, 2.36 billion kilowatt-hours of green power used each year.
  • Irving-based Kimberly-Clark, ranked 18th, 1.03 billion kilowatt-hours of green power used each year.
  • Round Rock-based Dell, ranked 46th, 365.6 million kilowatt-hours of green power used each year.
  • Houston-based Solvay America, ranked 61st, 220 million kilowatt-hours of green power used each year.
  • Plano-based Cinemark USA, ranked 95th, 120.2 million kilowatt-hours of green power used each year.

Two Texas schools appear on the list of the top colleges and universities for use of green power:

  • University of North Texas in Denton, ranked 17th, 80.3 million kilowatt-hours of green power used each year.
  • Fort Worth-based Tarrant County College District, ranked 25th, 57.1 million kilowatt-hours of green power used each year.

Four Texas institutions show up on the list of the top K-12 users of green power:

  • Austin ISD, ranked second, 19.8 million kilowatt-hours of green power used each year.
  • Lake Travis ISD (select schools), ranked 12th, 960,000 kilowatt-hours of green power used each year.
  • The da Vinci School in Dallas, ranked 15th, 237,990 kilowatt-hours of green power used each year.
  • The Empower School in Austin, ranked 17th, 115,314 kilowatt-hours of green power used each year.

The EPA's ranking of the largest users of green power across the country "is proof that good business practices can also benefit the environment," says James Critchfield, director of the EPA's Green Power Partnership.

From a lab in Rice University to a potential shelf life in stores, the innovation of food coating is just beginning. Photo courtesy of Rice University

Houston researchers find new eco-friendly way to preserve produce

preventing waste

Hunger impacts over 800 million people worldwide, leaving nearly 10 percent of the population suffering from chronic undernourishment. The distressing reality of food shortages co-exists in a world where 1.3 billion tons of food — nearly a third of what's produced — is wasted each year, according to the Food and Agriculture Organization of the United Nations. Rice University's scientific research team's latest discovery takes a crack at ending food shortages and improving sustainability with a common kitchen necessity: eggs.

The discovery of egg-based coating is promising to researchers, as it manages to both prolong produce shelf-life by double while impacting the environment.

"We are reducing the cost, and at the same time we are reducing the waste," says Muhammad M. Rahman, a research scientist at Rice University. "One in every eight people are hungry...on the other side, 33 percent of food is wasted."

It's no secret that overflowing landfills contribute to the climate crisis, piling high with food waste each year. While the United States produces more than seven billion eggs a year, manufacturers reject 3 percent of them. The Rice University researchers estimate that more than 200 million eggs end up in U.S. landfills annually.

According to the Environmental Protection Agency, half of all landfill gas is methane, a hazardous greenhouse gas that contributes to detrimental climate change. Landfills are the third-largest contributor to methane emissions in the country, riding the coattails of agriculture and the energy industry.

COVID-19 has upended supply chains across the nation, and in recent months food waste has become an even more pressing issue. The disruptions of consumer purchasing habits and the indefinite closures of theme parks and select restaurants put a burden on farmers who planned for larger harvests and restaurants unsure of how to adjust. With more Americans cooking at home, panic-buying from grocery stores is also playing a role in accumulating waste.

To understand the challenges of the food industry, it's important to acknowledge the biggest menace to the supply chain: perishability. Fruits and vegetables only last a few days once arriving in grocery stores due to culprits like dehydration, texture deterioration, respiration and microbial growth. Rice University researchers sought to create a coating that addresses each of these issues in a natural, cost-effective way.

Brown School of Engineering materials scientist, Pulickei Ajayan, and his colleagues, were looking for a protein to fight issues like food waste. Rahman, a researcher in Ajayan's lab, received his Ph.D. from Cornell University studying the structure-property relationship in green nanocomposites. He and his fellow researchers found that egg whites were a suitable protein that wouldn't alter the biological and physiological properties of fruit. The study published in Advanced Materials took one year and three months to complete.

According to Rahman, the egg-based coating is non-toxic, biodegradable and healthier than other alternatives on the market. Wax is one common method of fruit preservation that can result in adverse effects on gut cells and the body over time.

"Long-term consumption of wax is not actually good and is very bad for your health," says Dr. Rahman. After wax is consumed, gut cells fragment the preservatives in wax to ions. This process can have a negative impact on "membrane disruption, essential metabolite inhibition, energy drainage to restore homeostasis, and reductions in body-weight gain," according to the research abstract.

Preservation efforts like wax, modified atmospheric packaging and paraffin-based active coatings are not only more expensive and less healthy, but they also alter the taste and look of fruits.

"Reducing food shortages in ways that don't involve genetic modification, inedible coatings or chemical additives is important for sustainable living," Ajayan states in a press release.

The magic of preservation is all in the ingredients. Rice University's edible coating is mostly made from household items. Seventy percent of the egg coating is made from egg whites and yolk. Cellulose nanocrystals, a biopolymer from wood, are mixed with the egg to create a gas barrier and keep the produce from shriveling. To add elasticity to the brittle poly-albumen (egg), glycerol helps make the coating flexible. Finally, curcumin—an extract found in turmeric—works as an antibacterial to reduce the microbial growth and preserve the fruit's freshness.

The experiment was done by dipping strawberries, avocados, papayas and bananas in the multifunctional coating and comparing them with uncoated fruits. Observation during the decaying process showed that the coated fruits had about double the shelf-life of their non-coated counterparts.

For people with egg allergies, the coating can be removed simply by rinsing the produce in water. Rice University researchers are also beginning to test plant-based proteins for vegan consumers.

For its first iteration, Rahman finds that the coating shows "optimistic results" and "potential" for the future of food preservation.

"These are already very green materials. In the next phase, we are trying to optimize this coating and extend the samples from fruits to vegetables and eggs," says Rahman.

Researchers will also work to test a spray protein, making it easier for both commercial providers as well as consumers looking for an at-home coating option. From a lab in Rice University to a potential shelf life in stores, the innovation of food coating is just beginning.

Texas has been deemed inefficient when it comes to energy. Photo courtesy of Thomas Miller/Breitling Energy

National report declares Texas dim when it comes to energy efficiency

Power Problems

For a state that's home to the "Energy Capital of the World," Texas falls flat when it comes to energy efficiency. WalletHub, a personal finance site, ranked the most and least energy-efficient states, and Texas was named No. 42 of the 48 states evaluated.

The states were scored on home and auto efficiency out of an available 100 points. Home efficiency was calculated based on the ratio of total residential energy consumption to annual degree days, the days of the year in each region that require buildings to engage heating or cooling. Auto efficiency was established by factoring in the annual miles driven per year, gallons of gasoline consumed, and population. At the top of the national ranking were New York, Vermont, Utah, Rhode Island, and Massachusetts.

Texas, with its hot climate and underdeveloped public transportation systems, scored only 33.34 total points on the report. The state ranked No. 35 on home energy efficiency and No. 42 for auto energy efficiency. Texans drive over 271 billion miles annually and use over 19 billion gallons of gas, the second worst and worst rankings, respectively, among the states considered for this study.

The Environmental Protection Agency's research tells a different story of Texas' sustainability. The EPA's Green Power Partnership named its 2018 top local governments, and Texas cities claimed three spots in the top five. Houston was ranked No. 1, followed by Dallas at No. 2 and Austin at No. 5. This ranking is based on the annual green power usage — Houstonians use almost 1.1 million kilowatt hours of wind and solar energies annually.

According to the WalletHub report, each American household spends at least $2,000 annually on utilities and another $1,968 on gasoline and oil, which is up $59 from last year. New technologies and energy-efficient measures can reduce household utility costs by up to 25 percent, and a fuel-efficient car could save drivers over $700 annually, says WalletHub. The report's experts advised in properly weatherproofing homes; smart technology, such as thermostats; solar panels; and more.

---

This story originally appeared on CultureMap.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston engineers develop breakthrough device to advance spinal cord treatment

future of health

A team of Rice University engineers has developed an implantable probe over a hundred times smaller than the width of a hair that aims to help develop better treatments for spinal cord disease and injury.

Detailed in a recent study published in Cell Reports, the probe or sensor, known as spinalNET, is used to explore how neurons in the spinal cord process sensation and control movement, according to a statement from Rice. The research was supported by the National Institutes of Health, Rice, the California-based Salk Institute for Biological Studies, and the philanthropic Mary K. Chapman Foundation based in Oklahoma.

The soft and flexible sensor was used to record neuronal activity in freely moving mice with high resolution for multiple days. Historically, tracking this level of activity has been difficult for researchers because the spinal cord and its neurons move so much during normal activity, according to the team.

“We developed a tiny sensor, spinalNET, that records the electrical activity of spinal neurons as the subject performs normal activity without any restraint,” Yu Wu, a research scientist at Rice and lead author of the study said in a statement. “Being able to extract such knowledge is a first but important step to develop cures for millions of people suffering from spinal cord diseases.”

The team says that before now the spinal cord has been considered a "black box." But the device has already helped the team uncover new findings about the body's rhythmic motor patterns, which drive walking, breathing and chewing.

Lan Luan (from left), Yu Wu, and Chong Xie are working on the breakthrough device. Photo by Jeff Fitlow/Rice University

"Some (spinal neurons) are strongly correlated with leg movement, but surprisingly, a lot of neurons have no obvious correlation with movement,” Wu said in the statement. “This indicates that the spinal circuit controlling rhythmic movement is more complicated than we thought.”

The team said they hope to explore these findings further and aim to use the technology for additional medical purposes.

“In addition to scientific insight, we believe that as the technology evolves, it has great potential as a medical device for people with spinal cord neurological disorders and injury,” Lan Luan, an associate professor of electrical and computer engineering at Rice and a corresponding author on the study, added in the statement.

Rice researchers have developed several implantable, minimally invasive devices to address health and mental health issues.

In the spring, the university announced that the United States Department of Defense had awarded a four-year, $7.8 million grant to the Texas Heart Institute and a Rice team led by co-investigator Yaxin Wang to continue to break ground on a novel left ventricular assist device (LVAD) that could be an alternative to current devices that prevent heart transplantation.

That same month, the university shared news that Professor Jacob Robinson had published findings on minimally invasive bioelectronics for treating psychiatric conditions. The 9-millimeter device can deliver precise and programmable stimulation to the brain to help treat depression, obsessive-compulsive disorder and post-traumatic stress disorder.

Houston clean hydrogen startup to pilot tech with O&G co.

stay gold

Gold H2, a Houston-based producer of clean hydrogen, is teaming up with a major U.S.-based oil and gas company as the first step in launching a 12-month series of pilot projects.

The tentative agreement with the unnamed oil and gas company kicks off the availability of the startup’s Black 2 Gold microbial technology. The technology underpins the startup’s biotech process for converting crude oil into proprietary Gold Hydrogen.

The cleantech startup plans to sign up several oil and gas companies for the pilot program. Gold H2 says it’s been in discussions with companies in North America, Latin America, India, Eastern Europe and the Middle East.

The pilot program is aimed at demonstrating how Gold H2’s technology can transform old oil wells into hydrogen-generating assets. Gold H2, a spinout of Houston-based biotech company Cemvita, says the technology is capable of producing hydrogen that’s cheaper and cleaner than ever before.

“This business model will reshape the traditional oil and gas industry landscape by further accelerating the clean energy transition and creating new economic opportunities in areas that were previously dismissed as unviable,” Gold H2 says in a news release.

The start of the Black 2 Gold demonstrations follows the recent hiring of oil and gas industry veteran Prabhdeep Singh Sekhon as CEO.

“With the proliferation of AI, growth of data centers, and a national boom in industrial manufacturing underway, affordable … carbon-free energy is more paramount than ever,” says Rayyan Islam, co-founder and general partner at venture capital firm 8090 Industries, an investor in Gold H2. “We’re investing in Gold H2, as we know they’ll play a pivotal role in unleashing a new dawn for energy abundance in partnership with the oil industry.”

------

This article originally ran on EnergyCapital.

3 Houston innovators to know this week

who's who

Editor's note: Every week, I introduce you to a handful of Houston innovators to know recently making headlines with news of innovative technology, investment activity, and more. This week's batch includes an e-commerce startup founder, an industrial biologist, and a cellular scientist.

Omair Tariq, co-founder and CEO of Cart.com

Omair Tariq of Cart.com joins the Houston Innovators Podcast to share his confidence in Houston as the right place to scale his unicorn. Photo via Cart.com

Houston-based Cart.com, which operates a multichannel commerce platform, has secured $105 million in debt refinancing from investment manager BlackRock.

The debt refinancing follows a recent $25 million series C extension round, bringing Cart.com’s series C total to $85 million. The scaleup’s valuation now stands at $1.2 billion, making it one of the few $1 billion-plus “unicorns” in the Houston area.

Cart.com was co-founded by CEO Omair Tariq in October 2020. Read more.

Nádia Skorupa Parachin, vice president of industrial biotechnology at Cemvita

Nádia Skorupa Parachin joined Cemvita as vice president of industrial biotechnology. Photo courtesy of Cemvita

Houston-based biotech company Cemvita recently tapped two executives to help commercialize its sustainable fuel made from carbon waste.

Nádia Skorupa Parachin came aboard as vice president of industrial biotechnology, and Phil Garcia was promoted to vice president of commercialization.

Parachin most recently oversaw several projects at Boston-based biotech company Ginkjo Bioworks. She previously co-founded Brazilian biotech startup Integra Bioprocessos. Read more.

Han Xiao, associate professor of chemistry at Rice University

The funds were awarded to Han Xiao, a chemist at Rice University.

A Rice University chemist has landed a $2 million grant from the National Institute of Health for his work that aims to reprogram the genetic code and explore the role certain cells play in causing diseases like cancer and neurological disorders.

The funds were awarded to Han Xiao, the Norman Hackerman-Welch Young Investigator, associate professor of chemistry, from the NIH's Maximizing Investigators’ Research Award (MIRA) program, which supports medically focused laboratories. Xiao will use the five-year grant to advance his work on noncanonical amino acids.

“This innovative approach could revolutionize how we understand and control cellular functions,” Xiao said in the statement. Read more.