Houston researchers have uncovered why solid-state batteries break down and what could be done to slow the process. Photo via Getty Images

A team of researchers from the University of Houston, Rice University and Brown University has uncovered new findings that could extend battery life and potentially change the electric vehicle landscape.

The team, led by Yan Yao, the Hugh Roy and Lillie Cranz Cullen Distinguished Professor of Electrical and Computer Engineering at UH, recently published its findings in the journal Nature Communications.

The work deployed a powerful, high-resolution imaging technique known as operando scanning electron microscopy to better understand why solid-state batteries break down and what could be done to slow the process.

“This research solves a long-standing mystery about why solid-state batteries sometimes fail,” Yao, corresponding author of the study, said in a news release. “This discovery allows solid-state batteries to operate under lower pressure, which can reduce the need for bulky external casing and improve overall safety.”

A solid-state battery replaces liquid electrolytes found in conventional lithium-ion cells with a solid separator, according to Car and Driver. They also boast faster recharging capabilities, better safety and higher energy density.

However, when it comes to EVs, solid-state batteries are not ideal since they require high external stack pressure to stay intact while operating.

Yao’s team learned that tiny empty spaces, or voids, form within the solid-state batteries and merge into a large gap, which causes them to fail. The team found that adding small amounts of alloying elements, like magnesium, can help close the voids and help the battery continue to function. The team captured it in real-time with high-resolution videos that showed what happens inside a battery while it’s working under a scanning electron microscope.

“By carefully adjusting the battery’s chemistry, we can significantly lower the pressure needed to keep it stable,” Lihong Zhao, the first author of this work, a former postdoctoral researcher in Yao’s lab and now an assistant professor of electrical and computer engineering at UH, said in the release. “This breakthrough brings solid-state batteries much closer to being ready for real-world EV applications.”

The team says it plans to build on the alloy concept and explore other metals that could improve battery performance in the future.

“It’s about making future energy storage more reliable for everyone,” Zhao added.

The research was supported by the U.S. Department of Energy’s Battery 500 Consortium under the Vehicle Technologies Program. Other contributors were Min Feng from Brown; Chaoshan Wu, Liqun Guo, Zhaoyang Chen, Samprash Risal and Zheng Fan from UH; and Qing Ai and Jun Lou from Rice.

---

This article originally appeared on EnergyCaptialHTX.com.

If we want to see real change, we need action by all parties. Photo via Getty Images

Texas vs the nation: Comparing energy grid resilience across America

guest column

The 2024 Atlantic hurricane season has proven disastrous for the United States. On July 8th, Hurricane Beryl barreled into Texas as a Category 1 storm knocking out power for nearly 3 million, causing over $2.5 billion in damages, and resulting in the deaths of at least 42 people.

More recently, Hurricanes Helene and Milton tore through the East Coast, dropping trillions of gallons of rain on Florida, Georgia, South Carolina, North Carolina, Virginia, and Tennessee, causing dams to collapse, flash flooding, trees to fall, millions of power outages, complete destruction of homes and businesses, and the deaths of hundreds.

Amidst the horror and rescue efforts, wariness of the increasing strength of natural disasters, and repeated failures of energy grids around the nation begs a few questions.

  1. Is there a version of a power grid that can better endure hurricanes, heat waves, and freezes?
  2. How does the Texas grid compare to other regional grids in the United States?
  3. What can we do to solve our power grid problems and who is responsible for implementing these solutions?

Hurricane-proof grids do not exist

There is no version of a grid anywhere in the United States that can withstand the brunt of a massive hurricane without experiencing outages.

The wind, rain, and flooding are simply too much to handle.

Some might wonder, “What if we buried the power lines?” Surely, removing the power lines from the harsh winds, rain, flying debris, and falling tree branches would be enough to keep the lights on, right?

Well, not necessarily. Putting aside the fact that burying power lines is incredibly expensive – estimates range from thousands to millions of dollars per mile buried – extended exposure to water from flood surges can still cause damage to buried lines. To pile on further, flood surges are likely to seriously damage substations and transformers. When those components fail, there’s no power to run through the lines, buried or otherwise.

Heat waves and winter freezes are a different story

During extreme weather events like heat waves or winter freezes, the strain on the grid goes beyond simple issues of generation and distribution—it’s also a matter of human behavior and grid limitations.

Building and maintaining a power grid is extremely expensive, and storing electricity is not only costly but technically challenging. Most grids are designed with little "buffer" capacity to handle peak demand moments, because much of the infrastructure sits idle during normal conditions. Imagine investing billions of dollars in a power plant or wind farm that only operates at full capacity a fraction of the time. It’s difficult to recoup that investment.

When extreme weather hits, demand spikes significantly while supply remains relatively static, pushing the grid to its limits. This imbalance makes it hard to keep up with the surge in energy usage.

At the same time, our relationship with electricity has changed—our need for electricity has only increased. We’ve developed habits—like setting thermostats to 70 degrees or lower during summer heat waves or keeping homes balmy in winter— that, while comfortable, place additional strain on the system.

Behavioral changes, alongside investments in infrastructure, are crucial to ensuring we avoid blackouts as energy demand continues to rise in the coming years.

How the Texas grid compares to other regional grids

Is the Texas grid really in worse shape compared to other regional grids around the U.S.?

In some ways, Texas is lagging and in others, Texas is a leader.

One thing you might have heard about the Texas grid is that it is isolated, which restricts the ability to import power from neighboring regions during emergencies. Unfortunately, connecting the Texas grid further would not be a one-size fits all solution for fixing its problems. The neighboring grids would need to have excess supply at the exact moment of need and have the capacity to transmit that power to the right areas of need. Situations often arise where the Texas grid needs more power, but New Mexico, Oklahoma, Arkansas, and Louisiana have none to spare because they are experiencing similar issues with supply and demand at the same time. Furthermore, even if our neighbors have some power to share, the infrastructure may not be sufficient to deliver the power where it’s needed within the state.

On the other hand, Texas is leading the nation in terms of renewable development. The Lone Star State is #1 in wind power and #2 in solar power, only behind California. There are, of course, valid concerns about heavy reliance on renewables when the wind isn’t blowing or the sun isn’t shining, compounded by a lack of large-scale battery storage. Then, there’s the underlying cost and ecological footprint associated with the manufacturing of those batteries.

Yet, the only state with more utility-scale storage than Texas is California.

In recent years, ERCOT has pushed generators and utility companies to increase their winterization efforts, incentivize the buildout of renewables and electricity storage. You might have also heard about the Texas Electricity Fund, which represents the state’s latest effort to further incentivize grid stability. Improvements are underway, but they may not be enough if homeowners and renters across the state are unwilling to set their thermostats a bit higher during extended heatwaves.

How can we fix the Texas grid?

Here’s the reality we must face – a disaster-proof, on-demand, renewable-powered grid is extremely expensive and cannot be implemented quickly. We must come to terms with the fact that the impact of natural disasters is unavoidable, no matter how much we “upgrade” the infrastructure.

Ironically, the most impactful solution out there is free and requires only a few seconds to implement. Simple changes to human behavior are the strongest tool we have at our disposal to prevent blackouts in Texas. By decreasing our collective demand for electricity at the right times, we can all help keep the lights on and prices low.

During peak hours, the cumulative effort is as simple as turning off the lights, turning the thermostat up a few degrees, and running appliances like dishwashers and laundry machines overnight.

Another important element we cannot avoid addressing is global warming. As the temperatures on the surface of the earth increase, the weather changes, and, in many cases, it makes it more volatile.

The more fossil fuels we burn, the more greenhouse gases are released into the atmosphere. More greenhouse gases in the atmosphere leads to more volatile weather. Volatile weather, in turn, contributes to extreme grid strain in the form of heat waves, winter freezes, and hurricanes. This is no simple matter to solve, because the energy needs and capabilities of different countries differ. That is why some countries around the globe continue to expand their investments in coal as an energy source, the fossil fuel that burns the dirtiest and releases the most greenhouse gases per unit.

While governments and private organizations continue to advance carbon capture, renewable, and energy storage technology efficiency, the individual could aid these efforts by changing our behavior. There are many impactful things we can do to reduce our carbon footprint, like adjusting our thermostat a few degrees, eating less red meat, driving cars less often, and purchasing fewer single-use plastics to name a few.

If we want to see real change, we need action by all parties. The complex system of generation, transmission, and consumption all need to experience radical change, or the vicious cycle will only continue.

———

Sam Luna is director at BKV Energy, where he oversees brand and go-to-market strategy, customer experience, marketing execution, and more.

This article originally ran on EnergyCapital.

Texas has the most utility-scale solar capacity installed and is home to 20 percent of the overall U.S. solar fleet. Photo via Getty Images

Texas outshines California, takes top spot on new solar energy ranking

report

For the first time, Texas has passed California in the second quarter of 2024 to become the top solar state in the country.

The American Clean Power Association's quarterly market report found that, by adding 3,293 megawatts of new solar year-to-date, Texas has the most utility-scale solar capacity installed, comprising 20 percent of the overall U.S. solar fleet. The American Clean Power Association, which represents over 800 energy storage, wind, utility-scale solar, transmission, and clean hydrogen companies, found that Texas is home to 21,932 megawatts of capacity.

By utilizing clean energy initiatives, Texas included 1.6 gigawatts of new solar, 574 megawatts of storage, and 366 megawatts of onshore wind. With more than 28,000 megawatts, Texas had the highest volume of clean power development capacity in the second quarter. About 163,000 megawatts of capacity overall are in the works throughout the United States. Texas ranks No. 1 for total operating wind capacity and total operating solar capacity, and comes in second for operating storage capacity.

Texas again led in production levels with clean power construction projects nationally, which boasts more than 19,000 megawatts worth of clean power energy currently under construction. With almost 28.3 gigawatts in advanced development or under construction, Texas continues to come in at No.1, as California is next with over 16.4 gigawatts in the state’s project pipeline.

California added more than 1,900 megawatts of new clean power capacity in the second quarter, with its clean energy development behavior leaning more towards adding storage, which amounts to 60 percent of California’s year-to-date clean power installations.

According to the report from SmartAsset, the Lone Star State has the most clean energy capacity at 56,405 megawatts due to its sheer size for solar capacity, but continues to trail states with similar geographic characteristics in overall clean energy prevalence.

Another report published by the U.S. Energy Information Administration, says Texas will make up 35 percent of new utility-scale solar capacity in the U.S. this year, followed by California (10 percent) and Florida (6 percent).

While Texas’ solar efforts have shown positive trends, the state ranked No. 38 in a report by WalletHub that determined it was the thirteenth least green state.

------

This article originally ran on EnergyCapital.

Houston startup Sage Geosystems has tapped a utility provider for an energy storage facility in the San Antonio metro area. Photo via Getty Images

Houston energy startup selects Texas location for first storage facility

headed west

Houston-based geothermal energy startup Sage Geosystems has teamed up with a utility provider for an energy storage facility in the San Antonio metro area.

The three-megawatt EarthStore facility will be on land controlled by the San Miguel Electric Cooperative, which produces electricity for customers in 47 South Texas counties. The facility will be located in the town of Christine, near the cooperative’s coal-fired power plant.

Sage says its energy storage system will be paired with solar energy to supply power for the grid operated by the Electric Reliability Council of Texas (ERCOT). The facility is set to open later this year.

“Once operational, our EarthStore facility in Christine will be the first geothermal energy storage system to store potential energy deep in the earth and supply electrons to a power grid,” Cindy Taff, CEO of Sage Geosystems, says in a news release.

The facility is being designed to store geothermal energy during six- to 10-hour periods.

“Long-duration energy storage is crucial for the ERCOT utility grid, especially with the increasing integration of intermittent wind and solar power generation,” says Craig Courter, CEO of the San Miguel Electric Cooperative.

------

This article originally ran on EnergyCapital.

Adena Power uses three patented materials to produce a sodium-based battery that delivers clean, safe, long-lasting energy storage. Photo via adenapower.com

Ohio startup joins Houston clean tech accelerator

onboarding

A clean energy startup has joined Houston-based Halliburton Labs, an incubator for early-stage energy tech companies.

Adena Power, based in Ohio, uses three patented materials to produce a sodium-based battery that delivers clean, safe, long-lasting energy storage. The startup is trying to capitalize on the 100 terawatt-hour potential for energy storage in the U.S. grid.

“With Halliburton Labs’ support and operational expertise, Adena Power looks to accelerate scaling and take advantage of the high-growth market opportunity,” Nathan Cooley, co-founder and CEO of Adena Power, says in a news release.

Adena, founded in 2022, supplies energy storage batteries for the commercial, industrial, and utility sectors. The startup has collected funding from four investors, according to PitchBook: OhioXcelerate, Third Derivative, BRITE Energy Innovators, and For ClimateTech.

Adena’s addition to Halliburton Labs comes during a momentous year for the company. For example:

  • Adena won the People’s Choice Award at the National Renewable Energy Labs Industry Growth Forum.
  • Adena earned the MAKE IT (Manufacture of Advanced Key Energy Infrastructure Technologies) Prize from the U.S. Department of Energy.

“Our team is ready to collaborate with Adena to help them accelerate their growth to meet the demand for behind-the-meter storage solutions,” says Dale Winger, managing director of Halliburton Labs.

Halliburton Labs is a wholly owned subsidiary of Halliburton, a provider of products and services for the energy industry. The incubator will have pitches at the inaugural Houston Energy and Climate Startup Week next month.

------

This article originally ran on EnergyCapital.

The five-year grant from NASA will go toward creating the NASA MIRO Inflatable Deployable Environments and Adaptive Space Systems Center at UH. Photo via UH.edu

Houston college lands $5M NASA grant to launch new aerospace research center

to infinity and beyond

The University of Houston was one of seven minority-serving institutions to receive a nearly $5 million grant this month to support aerospace research focused on extending human presence on the moon and Mars.

The $4,996,136 grant over five years is funded by the NASA Office of STEM Engagement Minority University Research and Education Project (MUREP) Institutional Research Opportunity (MIRO) program. It will go toward creating the NASA MIRO Inflatable Deployable Environments and Adaptive Space Systems (IDEAS2) Center at UH, according to a statement from the university.

“The vision of the IDEAS2 Center is to become a premier national innovation hub that propels NASA-centric, state-of-the-art research and promotes 21st-century aerospace education,” Karolos Grigoriadis, Moores Professor of Mechanical Engineering and director of aerospace engineering at UH, said in a statement.

Another goal of the grant is to develop the next generation of aerospace professionals.

Graduate, undergraduate and even middle and high school students will conduct research out of IDEAS2 and work closely with the Johnson Space Center, located in the Houston area.

The center will collaborate with Texas A&M University, Houston Community College, San Jacinto College and Stanford University.

Grigoriadis will lead the center. Dimitris Lagoudas, from Texas A&M University, and Olga Bannova, UH's research professor of Mechanical Engineering and director of the Space Architecture graduate program, will serve as associate directors.

"Our mission is to establish a sustainable nexus of excellence in aerospace engineering research and education supported by targeted multi-institutional collaborations, strategic partnerships and diverse educational initiatives,” Grigoriadis said.

Industrial partners include Boeing, Axiom Space, Bastion Technologies and Lockheed Martin, according to UH.

UH is part of 21 higher-education institutions to receive about $45 million through NASA MUREP grants.

According to NASA, the six other universities to received about $5 million MIRO grants over five years and their projects includes:

  • Alaska Pacific University in Anchorage: Alaska Pacific University Microplastics Research and Education Center
  • California State University in Fullerton: SpaceIgnite Center for Advanced Research-Education in Combustion
  • City University of New York, Hunter College in New York: NASA-Hunter College Center for Advanced Energy Storage for Space
  • Florida Agricultural and Mechanical University in Tallahassee: Integrative Space Additive Manufacturing: Opportunities for Workforce-Development in NASA Related Materials Research and Education
  • New Jersey Institute of Technology in Newark:AI Powered Solar Eruption Center of Excellence in Research and Education
  • University of Illinois in Chicago: Center for In-Space Manufacturing: Recycling and Regolith Processing

Fourteen other institutions will receive up to $750,000 each over the course of a three-year period. Those include:

  • University of Mississippi
  • University of Alabama in Huntsville
  • Louisiana State University in Baton Rouge
  • West Virginia University in Morgantown
  • University of Puerto Rico in San Juan
  • Desert Research Institute, Reno, Nevada
  • Oklahoma State University in Stillwater
  • Iowa State University in Ames
  • University of Alaska Fairbanks in Fairbanks
  • University of the Virgin Islands in Charlotte Amalie
  • University of Hawaii at Manoa in Honolulu
  • University of Idaho in Moscow
  • University of Arkansas in Little Rock
  • South Dakota School of Mines and Technology in Rapid City
  • Satellite Datastreams

NASA's MUREP hosted its annual "Space Tank" pitch event at Space Center Houston last month. Teams from across the country — including three Texas teams — pitched business plans based on NASA-originated technology. Click here to learn more about the seven finalists.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston robotics co. unveils new robot that can handle extreme temperatures

Hot New Robot

Houston- and Boston-based Square Robot Inc.'s newest tank inspection robot is commercially available and certified to operate at extreme temperatures.

The new robot, known as the SR-3HT, can operate from 14°F to 131°F, representing a broader temperature range than previous models in the company's portfolio. According to the company, its previous temperature range reached 32°F to 104°F.

The new robot has received the NEC/CEC Class I Division 2 (C1D2) certification from FM Approvals, allowing it to operate safely in hazardous locations and to perform on-stream inspections of aboveground storage tanks containing products stored at elevated temperatures.

“Our engineering team developed the SR-3HT in response to significant client demand in both the U.S. and international markets. We frequently encounter higher temperatures due to both elevated process temperatures and high ambient temperatures, especially in the hotter regions of the world, such as the Middle East," David Lamont, CEO of Square Robot, said in a news release. "The SR-3HT employs both active and passive cooling technology, greatly expanding our operating envelope. A great job done (again) by our engineers delivering world-leading technology in record time.”

The company's SR-3 submersible robot and Side Launcher received certifications earlier this year. They became commercially available in 2023, after completing initial milestone testing in partnership with ExxonMobil, according to Square Robot.

The company closed a $13 million series B round in December, which it said it would put toward international expansion in Europe and the Middle East.

Square Robot launched its Houston office in 2019. Its autonomous, submersible robots are used for storage tank inspections and eliminate the need for humans to enter dangerous and toxic environments.

---

This article originally appeared on EnergyCapitalHTX.com.

Houston's Ion District to expand with new research and tech space, The Arc

coming soon

Houston's Ion District is set to expand with the addition of a nearly 200,000-square-foot research and technology facility, The Arc at the Ion District.

Rice Real Estate Company and Lincoln Property Company are expected to break ground on the state-of-the-art facility in Q2 2026 with a completion target set for Q1 2028, according to a news release.

Rice University, the new facility's lead tenant, will occupy almost 30,000 square feet of office and lab space in The Arc, which will share a plaza with the Ion and is intended to "extend the district’s success as a hub for innovative ideas and collaboration." Rice research at The Arc will focus on energy, artificial intelligence, data science, robotics and computational engineering, according to the release.

“The Arc will offer Rice the opportunity to deepen its commitment to fostering world-changing innovation by bringing our leading minds and breakthrough discoveries into direct engagement with Houston’s thriving entrepreneurial ecosystem,” Rice President Reginald DesRoches said in the release. “Working side by side with industry experts and actual end users at the Ion District uniquely positions our faculty and students to form partnerships and collaborations that might not be possible elsewhere.”

Developers of the project are targeting LEED Gold certification by incorporating smart building automation and energy-saving features into The Arc's design. Tenants will have the opportunity to lease flexible floor plans ranging from 28,000 to 31,000 square feet with 15-foot-high ceilings. The property will also feature a gym, an amenity lounge, conference and meeting spaces, outdoor plazas, underground parking and on-site retail and dining.

Preleasing has begun for organizations interested in joining Rice in the building.

“The Arc at the Ion District will be more than a building—it will be a catalyst for the partnerships, innovations and discoveries that will define Houston’s future in science and technology,” Ken Jett, president of Rice Real Estate Company, added in the release. “By expanding our urban innovation ecosystem, The Arc will attract leading organizations and talent to Houston, further strengthening our city’s position as a hub for scientific and entrepreneurial progress.”

Intel Corp. and Rice University sign research access agreement

innovation access

Rice University’s Office of Technology Transfer has signed a subscription agreement with California-based Intel Corp., giving the global company access to Rice’s research portfolio and the opportunity to license select patented innovations.

“By partnering with Intel, we are creating opportunities for our research to make a tangible impact in the technology sector,” Patricia Stepp, assistant vice president for technology transfer, said in a news release.

Intel will pay Rice an annual subscription fee to secure the option to evaluate specified Rice-patented technologies, according to the agreement. If Intel chooses to exercise its option rights, it can obtain a license for each selected technology at a fee.

Rice has been a hub for innovation and technology with initiatives like the Rice Biotech Launch Pad, an accelerator focused on expediting the translation of the university’s health and medical technology; RBL LLC, a biotech venture studio in the Texas Medical Center’s Helix Park dedicated to commercializing lifesaving medical technologies from the Launch Pad; and Rice Nexus, an AI-focused "innovation factory" at the Ion.

The university has also inked partnerships with other tech giants in recent months. Rice's OpenStax, a provider of affordable instructional technologies and one of the world’s largest publishers of open educational resources, partnered with Microsoft this summer. Google Public Sector has also teamed up with Rice to launch the Rice AI Venture Accelerator, or RAVA.

“This agreement exemplifies Rice University’s dedication to fostering innovation and accelerating the commercialization of groundbreaking research,” Stepp added in the news release.