Cindy Taff of Sage Geosystems shares her vision for her company and for the future of energy. Photo courtesy of Sage

When Cindy Taff was a vice president at the giant oil and gas company Shell in Houston, her middle schooler Brianna would sometimes look over her shoulder as she worked from home.

“Why are you still working in oil and gas?” her daughter asked more than once. “Is there a future in it? Why aren’t you moving into something clean?”

The words weighed on Taff.

“As a parent you want to give direction, and was I giving her the right direction?” she recalled.

At Shell, Taff was in charge of drilling wells and bringing them into production. She worked on oil and natural gas that's called unconventional in the industry, because the oil or natural gas is difficult to get out of the ground — it doesn't naturally gush out like in movies. It's a term often used for oily shale rock. Taff was somewhat unconventional for the industry, too. Her coworkers used to tease her for driving an efficient hybrid.

“You’re not helping oil and gas prices by driving a Prius," they'd say.

______

EDITOR’S NOTE: This is part of an occasional series of personal stories from the energy transition — the change away from a fossil-fuel based world that largely causes climate change.

______

Taff wanted Shell to pursue the energy that comes from the Earth's natural heat — geothermal. Her team looked into it, but Shell never greenlit any of those projects, saying it would take too much time to recoup the investment.

When Brianna went to college, she was passionate about energy too, but she wanted to work on renewables. After her sophomore year, in the summer of 2020, she got an internship at a geothermal company — one that in fact had just been launched by Taff's former colleagues at Shell — Sage Geosystems in Houston.

Now it was Taff looking over her daughter's shoulder and asking question as she worked from home during the pandemic.

And Sage executives were talking to Brianna, too. “We could use your mom here," they said. "Can you get her to come work for us?” Brianna recalled recently.

That's how Cindy Taff left her 36-year career at Shell to become chief operating officer at Sage.

“I didn't understand why Shell wasn't pursuing it,” she said about applying the company's drilling expertise to heat energy. "Then I got this great opportunity to pivot from oil and gas and work with these guys that I have the utmost respect for. And also, I wanted to make my daughter proud, quite frankly.”

Brianna Byrd, now 24, is the operations engineer and spokesperson at the company. She's glad her mother, now CEO, left oil and gas.

“Of course I’m biased, she’s my mom, but I don’t think Sage would be where it is without her,” she said.

The United States is a world leader in electricity made from geothermal energy, but this kind of electricity still accounts for less than half a percent of the nation’s total large-scale generation, according to the U.S. Energy Information Administration. In 2023, most geothermal electricity came from California, Nevada, Utah, Hawaii, Oregon, Idaho and New Mexico, where there are reservoirs of steam, or very hot water, close to the surface.

The Energy Department estimates this next generation of geothermal projects, like what Sage is doing, could provide some 90 gigawatts by 2050 — enough to power 65 million homes or more. That hinges on private investment, and on companies like Sage introducing this form of energy to regions where, until now, it’s been thought to be impossible.

How it works

Sage has two main technologies: The first makes electricity out of heat. The company drills wells and fractures hot, dry rock. Then electric pumps push water into those fractures, heating it up, and the hot water gets jettisoned to the surface where it spins a turbine.

But a funny thing happened during testing in Starr County, Texas. In late 2021, the team realized much of their technology could also be used to store energy.

If that works, it could be a big deal. Currently, to store energy at large scale, the United States is adding batteries, mostly lithium-ion type, to solar and wind projects, so they can charge up and send electricity back to the electric grid when the sun is not shining or the wind is not blowing. These batteries typically supply four hours maximum power.

Sage envisions some of its technology placed at solar and wind farms, too. When electricity demand is low, they'll use extra energy from a solar or wind farm to run electric pumps, pumping water into the underground fractures, leaving it there until demand for electricity increases — storing the energy beneath the Earth's surface for hours, days or even weeks.

It's a novel way to use the technology, said Silviu Livescu, lead author on a report looking at the future of geothermal in Texas. Livescu knows Taff and has followed the company's progress.

“It’s the right moment for companies like Sage with a purpose, with a mission and with the technology to show that geothermal indeed is the energy source we need to address climate change,” said Livescu, who co-founded a different geothermal startup in Austin, Texas.

These days, Taff is often out in front, talking with politicians and policymakers about the potential of geothermal. She attended the United Nations COP28 climate talks last year to share her vision for this kind of energy.

Sage has raised $30 million so far and is growing.

It's building a small (3-megawatt), geothermal energy storage system at San Miguel Electric Cooperative, Inc., south of San Antonio this year. It's working with U.S. military facilities in Texas that see geothermal as a way to power their bases securely. Sage recently announced partnerships for heating communities in Bucharest, Romania; clean electricity from geothermal for Meta's data centers, and energy storage and geothermal projects in California.

The company is final-testing a proprietary turbine to more efficiently convert heat to electricity.

Because of her oil and gas background, Taff said she knows geothermal will only be adopted widely if the cost comes down. The mantra at Sage is: It's going to be clean and it's going to be cheap. She's excited to be working in a field she feels is on the cusp of playing a big role in cleaning and stabilizing the electrical grid.

“I’ve never looked back,” she said. “I love what I’m doing and I think it’s going to be transformative.”

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Texas university to lead new FAA tech center focused on drones

taking flight

The Texas A&M University System will run the Federal Aviation Administration’s new Center for Advanced Aviation Technologies, which will focus on innovations like commercial drones.

“Texas is the perfect place for our new Center for Advanced Aviation Technologies,” U.S. Transportation Secretary Sean Duffy said in a release. “From drones delivering your packages to powered lift technologies like air taxis, we are at the cusp of an aviation revolution. The [center] will ensure we make that dream a reality and unleash American innovation safely.”

U.S. Sen. Ted Cruz, a Texas Republican, included creation of the center in the FAA Reauthorization Act of 2024. The center will consist of an airspace laboratory, flight demonstration zones, and testing corridors.

Texas A&M University-Corpus Christi will lead the initiative, testing unstaffed aircraft systems and other advanced technologies. The Corpus Christi campus houses the Autonomy Research Institute, an FAA-designated test site. The new center will be at Texas A&M University-Fort Worth.

The College Station-based Texas A&M system says the center will “bring together” its 19 institutions, along with partners such as the University of North Texas in Denton and Southern Methodist University in University Park.

According to a Department of Transportation news release, the center will play “a pivotal role” in ensuring the safe operation of advanced aviation technologies in public airspace.

The Department of Transportation says it chose the Texas A&M system to manage the new center because of its:

  • Proximity to major international airports and the FAA’s regional headquarters in Fort Worth
  • Existing infrastructure for testing of advanced aviation technologies
  • Strong academic programs and industry partnerships

“I’m confident this new research and testing center will help the private sector create thousands of high-paying jobs and grow the Texas economy through billions in new investments,” Cruz said.

“This is a significant win for Texas that will impact communities across our state,” the senator added, “and I will continue to pursue policies that create new jobs, and ensure the Lone Star State continues to lead the way in innovation and the manufacturing of emerging aviation technologies.”

Texas Republicans are pushing to move NASA headquarters to Houston

space city

Two federal lawmakers from Texas are spearheading a campaign to relocate NASA’s headquarters from Washington, D.C., to the Johnson Space Center in Houston’s Clear Lake area. Houston faces competition on this front, though, as lawmakers from two other states are also vying for this NASA prize.

With NASA’s headquarters lease in D.C. set to end in 2028, U.S. Sen. Ted Cruz, a Texas Republican, and U.S. Rep. Brian Babin, a Republican whose congressional district includes the Johnson Space Center, recently wrote a letter to President Trump touting the Houston area as a prime location for NASA’s headquarters.

“A central location among NASA’s centers and the geographical center of the United States, Houston offers the ideal location for NASA to return to its core mission of space exploration and to do so at a substantially lower operating cost than in Washington, D.C.,” the letter states.

Cruz is chairman of the Senate Committee on Commerce, Science, and Transportation; and Babin is chairman of the House Committee on Science, Space, and Technology. Both committees deal with NASA matters. Twenty-five other federal lawmakers from Texas, all Republicans, signed the letter.

In the letter, legislators maintain that shifting NASA’s headquarters to the Houston area makes sense because “a seismic disconnect between NASA’s headquarters and its missions has opened the door to bureaucratic micromanagement and an erosion of [NASA] centers’ interdependence.”

Founded in 1961, the $1.5 billion, 1,620-acre Johnson Space Center hosts NASA’s mission control and astronaut training operations. More than 12,000 employees work at the 100-building complex.

According to the state comptroller, the center generates an annual economic impact of $4.7 billion for Texas, and directly and indirectly supports more than 52,000 public and private jobs.

In pitching the Johnson Space Center for NASA’s HQ, the letter points out that Texas is home to more than 2,000 aerospace, aviation, and defense-related companies. Among them are Elon Musk’s SpaceX, based in the newly established South Texas town of Starbase; Axiom Space and Intuitive Machines, both based in Houston; and Firefly Aerospace, based in the Austin suburb of Cedar Park.

The letter also notes the recent creation of the Texas Space Commission, which promotes innovation in the space and commercial aerospace sectors.

Furthermore, the letter cites Houston-area assets for NASA such as:

  • A strong business environment.
  • A low level of state government regulation.
  • A cost of living that’s half of what it is in the D.C. area.

“Moving the NASA headquarters to Texas will create more jobs, save taxpayer dollars, and reinvigorate America’s space agency,” the letter says.

Last November, NASA said it was hunting for about 375,000 to 525,000 square feet of office space in the D.C. area to house the agency’s headquarters workforce. About 2,500 people work at the agency’s main offices. NASA’s announcement set off a scramble among three states to lure the agency’s headquarters.

Aside from officials in Texas, politicians in Florida and Ohio are pressing NASA to move its headquarters to their states. Florida and Ohio both host major NASA facilities.

NASA might take a different approach, however. “NASA is weighing closing its headquarters and scattering responsibilities among the states, a move that has the potential to dilute its coordination and influence in Washington,” Politico reported in March.

Meanwhile, Congressional Delegate Eleanor Holmes Norton, a Democrat who represents D.C., introduced legislation in March that would prohibit relocating a federal agency’s headquarters (including NASA’s) away from the D.C. area without permission from Congress.

“Moving federal agencies is not about saving taxpayer money and will degrade the vital services provided to all Americans across the country,” Norton said in a news release. “In the 1990s, the Bureau of Land Management moved its wildfire staff out West, only to move them back when Congress demanded briefings on new wildfires.”

Houston research breakthrough could pave way for next-gen superconductors

Quantum Breakthrough

A study from researchers at Rice University, published in Nature Communications, could lead to future advances in superconductors with the potential to transform energy use.

The study revealed that electrons in strange metals, which exhibit unusual resistance to electricity and behave strangely at low temperatures, become more entangled at a specific tipping point, shedding new light on these materials.

A team led by Rice’s Qimiao Si, the Harry C. and Olga K. Wiess Professor of Physics and Astronomy, used quantum Fisher information (QFI), a concept from quantum metrology, to measure how electron interactions evolve under extreme conditions. The research team also included Rice’s Yuan Fang, Yiming Wang, Mounica Mahankali and Lei Chen along with Haoyu Hu of the Donostia International Physics Center and Silke Paschen of the Vienna University of Technology. Their work showed that the quantum phenomenon of electron entanglement peaks at a quantum critical point, which is the transition between two states of matter.

“Our findings reveal that strange metals exhibit a unique entanglement pattern, which offers a new lens to understand their exotic behavior,” Si said in a news release. “By leveraging quantum information theory, we are uncovering deep quantum correlations that were previously inaccessible.”

The researchers examined a theoretical framework known as the Kondo lattice, which explains how magnetic moments interact with surrounding electrons. At a critical transition point, these interactions intensify to the extent that the quasiparticles—key to understanding electrical behavior—disappear. Using QFI, the team traced this loss of quasiparticles to the growing entanglement of electron spins, which peaks precisely at the quantum critical point.

In terms of future use, the materials share a close connection with high-temperature superconductors, which have the potential to transmit electricity without energy loss, according to the researchers. By unblocking their properties, researchers believe this could revolutionize power grids and make energy transmission more efficient.

The team also found that quantum information tools can be applied to other “exotic materials” and quantum technologies.

“By integrating quantum information science with condensed matter physics, we are pivoting in a new direction in materials research,” Si said in the release.

---

This article originally appeared on our sister site, EnergyCapitalHTX.com.