Texas is positioned to be a great state for the EV industry. Photo via Getty Images

As Texans adopt electric vehicles, significant strides must be made to ensure public charging meets demand. Steps are being made under the National Electric Vehicle Infrastructure Formula Program to address such needs. With new developments promising to bolster the state's infrastructure, it’s only a matter of time until all EV owners will have access to reliable and fast charging options.

NEVI Funding in Texas

Texans will benefit from NEVI funding. This federal initiative is part of a broader effort to enhance EV adoption by providing drivers with a robust and reliable network of fast chargers, particularly along corridors, i.e., highways between Houston, Dallas, Austin, San Antonio, etc. To date, Texas has been busy installing 66 fast-charging ports along those key corridors with much more to come (Electrify News Site). There are multiple phases associated with NEVI, and the first 50 sites outlined by the Texas Electric Vehicle Infrastructure Plan have been completed.

Enhanced Accessibility and Convenience

One of the key aspects of the NEVI-funded stations is their strategic placement in areas previously underserved by existing charging networks. This focus not only addresses range anxiety but also ensures a minimum of four chargers per site with a reliability standard of 97 percent uptime. Such strategic deployment is crucial for supporting the widespread use of electric vehicles, especially in a state as vast as Texas (Electrify News Site).

NACS Compatibility and Adapters: Bridging the Gap

To further support all EV drivers, Tesla has opened their previously closed charging network. This network’s charging system is known as the North American Charging Standard, or NACS. This will allow for other brands to leverage the largest and most reliable charging network in Texas and beyond. Now, just about every manufacturer has opted in to the NACS charging ecosystem. This standard will undoubtedly result in more coverage for all EV drivers and a true standard for the industry. You can see the list of manufacturers that have adopted NACS thus far here.

If you already drive a non-Tesla EV, don’t worry. Many manufacturers have embarked upon developing an adapter for you such as Ford. If you drive a Tesla, your options will remain more or less the same. You’ll not need an adapter with future fast charging stations.

At the end of 2023, there were roughly 19,000 Tesla Superchargers and 15,000 from the entirety of the charging community. Tesla aims to add another 7,500 by the end of 2024 in addition to $7.5B from the federal government to support all other charging initiatives.

This move is particularly beneficial for Texas, where the distances between charging stations can be vast. By enabling access to Tesla's superchargers, drivers can embark on long road trips with the assurance that a fast and reliable charging option is never far away. This increased accessibility will likely spur greater EV adoption, as drivers gain confidence in the state's charging infrastructure.

Charging at Home

The concept of fueling and charging EVs at home offers an exciting paradigm shift. Drivers often have to wait for their cars to approach Empty “E” on their dashboard. Some take it all the way down to the red line (or below) while others begin searching for gas stations once they’ve reached a quarter tank.

With EVs however, the average Houstonian who drives ~30 miles a day now has the potential to begin their day with a full charge. Those who have access to home charging can plug their cars in when they get home from work and typically make up for their daily driving/commute with a standard power outlet which offers a customer anywhere from 30-40 miles of charger over a 12 hour period.

But let’s say you’re a super commuter - someone who drives 75 miles a day or more! Starting off with a full charge every day is almost a necessity, and a standard power outlet may not cut it. Luckily, Level 2 chargers exist and serve as an incredible time and money saver. Like the average commuter, a super commuter can simply plug in a level 2 charger, and the EV will be back to full by the time they wake the next morning (offering anywhere from 20-30 miles of charge per hour). Even those who drive 150+ miles a day can confidently use their EVs as a daily driver if they have a Level 2 charger at home.

Embracing the Future

As we look to the future of transport and energy, the synergy between NEVI and Tesla’s network should create a compelling narrative for those thinking about leasing an EV. Combine that with exciting new battery tech and potential range improvements, fueled by West Texas wind and solar, Texas is positioned to be a great state for the EV industry.

———

Chris George is the United States co-lead at Octopus Electric Vehicles.

This article originally ran on EnergyCapital.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston team develops low-cost device to treat infants with life-threatening birth defect

infant innovation

A team of engineers and pediatric surgeons led by Rice University’s Rice360 Institute for Global Health Technologies has developed a cost-effective treatment for infants born with gastroschisis, a congenital condition in which intestines and other organs are developed outside of the body.

The condition can be life-threatening in economically disadvantaged regions without access to equipment.

The Rice-developed device, known as SimpleSilo, is “simple, low-cost and locally manufacturable,” according to the university. It consists of a saline bag, oxygen tubing and a commercially available heat sealer, while mimicking the function of commercial silo bags, which are used in high-income countries to protect exposed organs and gently return them into the abdominal cavity gradually.

Generally, a single-use bag can cost between $200 and $300. The alternatives that exist lack structure and require surgical sewing. This is where the SimpleSilo comes in.

“We focused on keeping the design as simple and functional as possible, while still being affordable,” Vanshika Jhonsa said in a news release. “Our hope is that health care providers around the world can adapt the SimpleSilo to their local supplies and specific needs.”

The study was published in the Journal of Pediatric Surgery, and Jhonsa, its first author, also won the 2023 American Pediatric Surgical Association Innovation Award for the project. She is a recent Rice alumna and is currently a medical student at UTHealth Houston.

Bindi Naik-Mathuria, a pediatric surgeon at UTMB Health, served as the corresponding author of the study. Rice undergraduates Shreya Jindal and Shriya Shah, along with Mary Seifu Tirfie, a current Rice360 Global Health Fellow, also worked on the project.

In laboratory tests, the device demonstrated a fluid leakage rate of just 0.02 milliliters per hour, which is comparable to commercial silo bags, and it withstood repeated disinfection while maintaining its structure. In a simulated in vitro test using cow intestines and a mock abdominal wall, SimpleSilo achieved a 50 percent reduction of the intestines into the simulated cavity over three days, also matching the performance of commercial silo bags. The team plans to conduct a formal clinical trial in East Africa.

“Gastroschisis has one of the biggest survival gaps from high-resource settings to low-resource settings, but it doesn’t have to be this way,” Meaghan Bond, lecturer and senior design engineer at Rice360, added in the news release. “We believe the SimpleSilo can help close the survival gap by making treatment accessible and affordable, even in resource-limited settings.”

Oxy's $1.3B Texas carbon capture facility on track to​ launch this year

gearing up

Houston-based Occidental Petroleum is gearing up to start removing CO2 from the atmosphere at its $1.3 billion direct air capture (DAC) project in the Midland-Odessa area.

Vicki Hollub, president and CEO of Occidental, said during the company’s recent second-quarter earnings call that the Stratos project — being developed by carbon capture and sequestration subsidiary 1PointFive — is on track to begin capturing CO2 later this year.

“We are immensely proud of the achievements to date and the exceptional record of safety performance as we advance towards commercial startup,” Hollub said of Stratos.

Carbon dioxide captured by Stratos will be stored underground or be used for enhanced oil recovery.

Oxy says Stratos is the world’s largest DAC facility. It’s designed to pull 500,000 metric tons of carbon dioxide from the air and either store it underground or use it for enhanced oil recovery. Enhanced oil recovery extracts oil from unproductive reservoirs.

Most of the carbon credits that’ll be generated by Stratos through 2030 have already been sold to organizations such as Airbus, AT&T, All Nippon Airways, Amazon, the Houston Astros, the Houston Texans, JPMorgan, Microsoft, Palo Alto Networks and TD Bank.

The infrastructure business of investment manager BlackRock has pumped $550 million into Stratos through a joint venture with 1PointFive.

As it gears up to kick off operations at Stratos, Occidental is also in talks with XRG, the energy investment arm of the United Arab Emirates-owned Abu Dhabi National Oil Co., to form a joint venture for the development of a DAC facility in South Texas. Occidental has been awarded up to $650 million from the U.S. Department of Energy to build the South Texas DAC hub.

The South Texas project, to be located on the storied King Ranch, will be close to industrial facilities and energy infrastructure along the Gulf Coast. Initially, the roughly 165-square-mile site is expected to capture 500,000 metric tons of carbon dioxide per year, with the potential to store up to 3 billion metric tons of CO2 per year.

“We believe that carbon capture and DAC, in particular, will be instrumental in shaping the future energy landscape,” Hollub said.

---

This article originally appeared on our sister site, EnergyCapitalHTX.com.