The benefits of construction digital twins, such as improved planning and design, streamlined collaboration, and effective risk management, are transforming how projects are executed. Photo via Getty Images

The construction industry is no stranger to embracing technological advancements, and one of the latest breakthroughs is the advent of construction digital twin technology.

Blending the virtual and physical worlds, construction digital twins offer immense potential for enhancing efficiency, reducing costs, and improving decision-making in construction projects.

It is a fascinating and ever-changing world of technology in construction digital twin technology and the following information explores its key components, benefits, and real-world applications in the construction sector.

What is a construction digital twin?

A construction digital twin is a virtual replica of a physical asset, process, or system that integrates real-time data from various sources to provide a holistic and dynamic representation. It encompasses a portion of the entire lifecycle of the project, potentially starting from planning and design into construction, commissioning, and data collection for ongoing maintenance.

The key components of a construction digital twin include the physical asset, sensors, data acquisition systems, connectivity infrastructure, cloud platforms, and advanced analytics. Various tools or platforms can be used at different stages of a project.

Skanska, a construction and development company, has created an internal hybrid approach combining a digital twin model with a custom analytics dashboard. The process allows for tracking production control during construction. What is used is a less-is-more approach to manual data entry into models and link to automated external data sources, which are combined and analyzed together in a separate dashboard. These color-coded models are combined with external data for schedule, cost, and man hour data for predictive analysis and production rates.

Improved planning and design

Digital twins allow design and construction professionals to simulate and optimize designs with a virtual model of the building before physically implementing them. This capability enables early detection and resolution of design flaws, reducing rework and costly delays. Adjacent building and city data can inform early design decisions. By leveraging the existing data from a digital twin, renovation projects can streamline processes, reduce risks, improve efficiency, and make informed design decisions, ultimately resulting in more successful and cost-effective renovations.

Enhanced construction processes

A construction digital twin allows stakeholders to visualize and simulate the project, analyze potential issues, optimize workflows, and make informed decisions. Key data sources include: installation, schedule, man hours, and cost. Additional real-time data from sensors embedded in physical assets can be fed into construction digital twins, enabling real-time monitoring and analysis. Project teams can enhance collaboration, improve efficiency, maintain schedule, reduce costs, and minimize risks throughout the construction process.

Effective risk management

Digital twins enable construction companies to simulate and analyze potential risks, such as structural weaknesses and environmental or safety hazards. Builders and their clients are at an advantage since they can address these risks in the virtual environment and significantly reduce the occurrence of accidents and associated liabilities.

Streamlined collaboration

Construction digital twins act as a shared platform for all stakeholders involved in a construction project, including architects, engineers, contractors, and facility managers. This flow of information fosters seamless collaboration, improves communication, and results in better decision-making through a data-driven environment. Solutions vary per stage and parties involved.

Real-world applications

Construction digital twin technology is already finding practical application in the construction industry, including locally at 1550 on The Green, Skanska’s state-of-the art, sustainable office building bringing the outdoors in.

Smart building construction

By creating a digital twin of a smart building, companies can optimize energy efficiency, HVAC systems, and space. The real-time monitoring of energy consumption and occupancy patterns combined with as-built BIM and systems data allows for predictive maintenance. Automations and AI assisted controls are also on the horizon.

Bringing it all together

Construction digital twin technology is poised to revolutionize the construction industry. By merging the virtual and physical realms, it enables construction professionals to make more informed decisions, enhance efficiency, and minimize risks.

The benefits of construction digital twins, such as improved planning and design, streamlined collaboration, and effective risk management, are transforming how projects are executed. As this technology continues to evolve, there are bound to be greater advancements in construction practices, ultimately leading to safer, smarter, and more sustainable built environments. Key data points and use cases vary per phase and stakeholder, and digital twins are a great asset throughout the project lifecycle.

------

Edwin Bailey is senior preconstruction technologist at Skanska, a leading multi-national project development and construction group, in Houston.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston university is at the top of the class in new college ranking

Top of the Class

Rice University is maintaining its reputation as one of the top colleges in the U.S., according to a new batch of rankings from WalletHub.

Rice topped WalletHub's 2026 lists comparing the best colleges and universities in Texas and the best universities in the South. The private institution also ranked as the 9th best university in the country, three spots lower than its 2024 ranking.

The personal finance website's experts analyzed nearly 800 colleges and universities in the U.S. using 30 key metrics, including factors like student-faculty ratios, graduation rates, campus safety, and many more.

Rice was ranked across seven major categories in the report and scored highly for its faculty resources (No. 10), student educational outcomes (No. 12), student selectivity (No. 16), student career outcomes (No. 26), and campus experience (No. 46).

The only two categories Rice lagged behind in were campus safety (No. 576) and cost and financing (No. 700). U.S. News & World Report says tuition and fees at Rice can add up to more than $65,000 per year for in-state students, with the total cost soaring to nearly $84,000 when factoring in the price for housing, food, books and supplies, transportation, and personal expenses.

In addition to topping WalletHub's rankings, Rice has also claimed top spots in other prestigious lists by U.S. News, Forbes, The Princeton Review, and more. Rice's revered graduate schools – including the MBA program at the Jones Graduate School of Business and Brown School of Engineering and Computing – are also among the best in the country, according to U.S. News and The Princeton Review.

Locally, University of Houston also ranked among the statewide top 10 and ranked as the 268th best university in the U.S. for 2026. In the regional rankings of best universities in the South, UH ranked 52nd on the list

The 10 best colleges and universities in Texas for 2026 are:

  • No. 1 – Rice University, Houston
  • No. 2 – The University of Texas at Austin
  • No. 3 – Trinity University, San Antonio
  • No. 4 – Texas A&M University-College Station
  • No. 5 – Texas Christian University, Fort Worth
  • No. 6 – Austin College, Sherman
  • No. 7 – Southwestern University, Georgetown
  • No. 8 – University of Dallas
  • No. 9 – The University of Texas at Dallas
  • No. 10 – University of Houston
---
This article originally appeared on CultureMap.com.

Port Houston reports emissions progress as cargo volumes climb

Greener growth

Port Houston’s initiatives to reduce emissions have shown some positive results, according to new data from the Port of Houston Authority.

Pulling from the Goods Movement Emissions Inventory (GMEI) report, which tracks port-related air emissions, Port Houston cited several improvements compared to the most recent report from 2019.

The port has seen total tonnage and container volumes increase by 16 percent and 28 percent, respectively, since 2019. However, greenhouse gas emissions have increased at a slower rate, growing only by 10 percent during the same time period, according to the data.

Additionally, emissions of nitrogen oxide fell by 7 percent, and emissions of particulate matter fell by 4 percent, despite adding 280 more pieces of cargo handling equipment.

“These results show that our emission-reduction efforts are working, and we are moving in the right direction,” Chairman Ric Campo said in a news release.

The Port Commission also recently approved items related to the $3 million U.S. Environmental Protection Agency Clean Ports Program (CPP) grant, which it received last year. The items will allow the port to work towards five new sustainability initiatives.

They include:

  1. An inventory of the port’s Scopes 1, 2, and 3 for greenhouse gas emissions
  2. A Port Area Climate Action Plan for the area and surrounding communities
  3. A CPP Truck Route Analysis
  4. Creation of the CPP Trucking Industry Collaborative
  5. Design of a customized website for Port of Houston Partners in Maritime Education, which is a non-profit leading maritime workforce development effort in local schools

Port Houston aims to be carbon neutral by 2050.

Houston leader on building inclusive communities through innovation

Guest Column

Innovation is often celebrated for speed or curiosity, but genuine progress is about inclusion and expanding the populations that benefit from new technologies.

For example, at Yale University, nursing students are now utilizing a hyper-realistic patient mannequin with Down syndrome, which not only mimics appearance but also fosters both empathy and competence in medical professionals who will treat people of all abilities. Tools like this remind us that innovation is not only about what is new, but also about how we include everyone in progress.

Inclusive Technology: What It Means

Inclusive technology design begins with diverse users in mind, including people living with disabilities such as blindness, hearing loss, or limb loss. Additionally, neurodiverse learners and those with varied learning styles benefit from inclusive technology. The purpose is to create tools that serve everyone in their homes, classrooms, workplaces, and public spaces. Inclusive technology is not only about empathy, but also equity. Innovation bridges gaps and extends access to all people.

National and Local Innovations Advancing Inclusion

Across the country, inclusive technology is transforming access for individuals with varying abilities. Robotics adapted for visually impaired students, audio-virtual reality labs for immersive learning, and AI-based platforms that personalize lessons for students are helping students engage in ways traditional tools cannot. These innovations are not just technical; instead, they are also deeply human, designed to expand access and opportunity for every learner.

Locally, Houston-based organizations demonstrate how inclusive tech can be paired with supportive programs to amplify impact:

  • BridgingApps, a program of Easter Seals of Greater Houston, provides assistive-tech labs and mobile devices for children and adults with disabilities, helping students communicate, learn, and connect in ways they may not have thought possible before.
  • MADE Houston creates adaptive classroom environments for twice-exceptional learners (gifted students with learning differences), ensuring that both their strengths and challenges are incorporated in the curriculum and class experiences.

Both programs partner with Camp For All to provide barrier-free camp experiences to their students.

Innovative technology has the power to change student outcomes and improve the quality of life. Reports such as Inclusive Technology in a 21st Century Learning System show that students with disabilities who have access to these tools are two to three times more likely to graduate from high school than those without.

Complementing these technology-driven advances are experiential programs that create community and empowering experiences.

Camp For All, for example, offers medically safe and adaptive camp experiences for children and adults with challenging illnesses, disabilities, or special needs. Camp For All demonstrates how barrier-free environments, combined with opportunities to explore and try new activities, foster confidence and resilience in campers, such as those who benefit from Easter Seals of Greater Houston and MADE Houston camps.

Why This Matters

When tools and technologies are designed to include everyone, the impact has the potential to impact all people. Individuals with physical, sensory, or learning differences gain confidence and access to opportunities, which leads to more diverse workforces and stronger communities.

Technology, educational tools, and thoughtfully designed programs can reduce barriers, improve academic outcomes, and help prepare individuals for future employment and independent living. Conversely, failing to design inclusively can further entrench inequities related to race, income, and abilities.

For context, while the national graduation rate for students with disabilities has risen to 74%, it still lags behind the 88% rate for peers without disabilities. Technology and inclusive programs help bridge this gap, ensuring that not only more students graduate, but that individuals with disabilities also are better prepared to access higher education, participate fully in the workforce, and engage in social and civic life.

Inclusive tools, such as accessible transportation services, audible pedestrian signals, braille ballots for voting, and short-term device loan programs like TTAP, expand opportunities and promote equitable participation across all aspects of society.

Additionally, research shows that early exposure and inclusion of those living with disabilities, such as in classrooms, community spaces, and club activities, fosters a greater acceptance of differences and proclivity toward inclusive attitudes as children mature. When we begin focusing on acceptance and innovative solutions for all people from the very beginning, our communities are stronger and we increase access to participation for all.

Challenges, Opportunities, and Ripple Effects

Despite progress, obstacles to scaling inclusive technology remain. Many families and schools cannot afford high-end assistive devices, and tools are often developed without input from the users who will rely on them the most.

Although grants and pilot programs exist, systemic funding and support are still limited. Educators, healthcare providers, and city planners also require training and guidance to effectively implement these tools. Overcoming these challenges requires coordinated efforts among technology companies, educators, nonprofits, policymakers, and the communities they serve.

Houston’s rich mix of innovation, research institutions, and nonprofit networks makes it an ideal testing ground for inclusive technology, and we are seeing more advancements daily. Schools and early learning centers are piloting innovative tools, including adaptive learning software, interactive robotics, music therapy, and word prediction programs.

At the same time, medical and therapy programs use simulation labs and telehealth tools to improve treatment for children and adults with disabilities. Civic and public spaces are also becoming more accessible through smart city initiatives such as wayfinding apps, inclusive playgrounds, and sensory-friendly public areas. These examples demonstrate that inclusive technology is about creating meaningful opportunities for everyone, regardless of ability, background, or resources.

When inclusion is prioritized, the benefits extend far beyond individual users. Educational outcomes improve as more students meet learning goals and graduate successfully. Workforce readiness increases as a broader range of skills and abilities enters the labor market. Community equity grows as individuals from underserved communities gain access to tools and experiences that were previously inaccessible.

Increasing participation for students and individuals translates into stronger local and state economies. At its core, inclusive technology creates equity and resilience at both the individual and community level.

Moving Forward

Designing with empathy, investing in equitable access, and acting with urgency are essential to building communities where everyone has the opportunity to contribute. Houston, with its combination of medical research institutions, ed-tech startups, aerospace leadership, nonprofit networks, and pilot programs, is uniquely positioned to lead the nation in inclusive innovation.

By prioritizing technology and programs that serve all learners, the city can demonstrate that meaningful progress is measured not by speed or novelty, but by the number of people who benefit from it. When cities, organizations, and communities commit to inclusive design, they build stronger and more equitable places where everyone benefits and thrives.

---

Pat Prior Sorrells is president and CEO of Camp For All, a Texas-based nonprofit organization. Located in Burton, Texas, the 206-acre Camp For All site was designed with no barriers for children and adults with special needs to experience the joy of camping and nature. Camp For All collaborates with more than 65 nonprofit organizations across the Greater Houston area and beyond to enable thousands of campers and their families to discover life each year. She speaks regularly on the need for inclusive design in public spaces.