Yaxin Wang leads the IDEA Lab at the Texas Heart Institute. Photo via texasheart.org

In 1969, Dr. Denton A. Cooley implanted the first total artificial heart in a living patient. Most Houstonians know Cooley’s name, but fewer can name his colleague, Dr. Domingo Liotta, who created the device. Liotta died last year at the age of 97, but his work continues at the Texas Heart Institute.

Meet Yaxin Wang, PhD. The research engineer leads the IDEA Lab at THI. IDEA stands for Innovative Device & Engineering Applications, an apt description of what Wang and her colleagues do. She’s currently focused intensely on projects that could radically change transplantation for patients in need of an artificial heart or new, healthy lungs.

Specifically, Wang is helping to develop a pediatric left ventricular assist device (NeoVAD) to mechanically pump that part of the heart in infants and small children born with heart defects.

“There aren’t a lot of options for very small kids,” explains Wang. “That’s why we’re working on an implantable LVAD for very young kids.”

In fact, as many as 14,000 children with congenital heart disease are hospitalized each year waiting for a new heart, but only around 500 pediatric transplants actually take place.

Essentially, once patients reach their teens, their chest cavities are large enough for an adult donor heart. But smaller children means smaller rib cages and fewer available hearts. For children born with heart disease, Wang’s LVAD could be a lifesaver. Because she has crafted minimally invasive devices that were developed for long-term use, patients could live far longer than before.

The project, funded by a $2.8 million NIH grant, has a big name attached. Dr. O.H. Frazier is a THI legend who claims to have performed 900 LVAD implantations, not to mention some 1,200 heart transplants. In April, the team published their initial findings regarding the success of and improvements in making rotary LVADs over the last half-century.

A different team, also led by Frazier and Wang, received a pair of grants this summer. That includes $2.8 million from the NIH and a total of $7.8 million from a DoD focused program and a THI sub-award. Their work will center on a novel centrifugal left-ventricular assist device intended for end-stage heart failure patients, a potentially safer alternative to a heart transplant.

But Wang isn’t solely focused on the heart. Working with Dr. Gabriel Loor, a cardiothoracic surgeon at Baylor College of Medicine, Wang is also responsible for a method of preserving the lungs for a longer stretch of time, which would allow for further transport, and in the more distant future, potential genetic modification before transplantation. Using animal models for the moment, “they can survive for several hours without any issues,” says Wang.

The pioneering researcher is well on her way to making a name for herself at the Texas Heart Institute and beyond. And soon, she’ll be saving countless lives.

The Texas Heart Institute recently received its largest charitable donation in its history. Photo courtesy of THI

Massive $32M gift from former patient, new UH deal pump big changes into Houston organization

all heart

Leadership at The Texas Heart Institute has two major things to celebrate. First, it just received a $32 million donation from a patient — the largest charitable donation in its history.

Shortly after that news came out, the institute announced a new partnership with the University of Houston Tilman J. Fertitta Family College of Medicine that allows those UH medical students to join a clinical rotation at The Texas Heart Institute. The alliance means valuable insights and experience with both inpatient and outpatient cardiology for UH's future doctors.

"Students will have the chance to develop their skills in the diagnosis and management of cardiovascular conditions and will be taught by outstanding clinical educators,” said Dr. Joseph G. Rogers, president and CEO of The Texas Heart Institute and heart failure specialist at The Texas Heart Institute Center for Cardiovascular Care, in a press release announcing the news.

A game-changing gift that's all heart

As for that mammoth gift, the $32 million donation comes from Dr. Frederick M. Weissman, a neurologist from New York who was a patient at the Institute 40 years ago. Fittingly, huis gift will be used to support cardiovascular research.

This isn't Weissman's first gift to the institution. That came following his experience there in the mid-1980s, when he was treated by world-renowned cardiac surgeon Dr. Denton A. Cooley.

In November of 1986, Weissman wrote a check for $5,000; another followed the next month, with a note that read, in part, “my conscience compels me to make another contribution to The Texas Heart Institute. I don’t think I could ever repay you for what you and your staff have done for me.” Weissman and Cooley would go on to be friends throughout their lives.

When Dr. Weissman died in 2005, he left The Texas Heart Institute $500,000. The organization recently received the residual of his estate — valued at more than $32 million.

“Those of us who were fortunate enough to work with and be trained by Dr. Cooley know he was much more than just an incredibly gifted surgeon," renowned transplant surgeon and Co-director of THI’s Center for Preclinical Surgical & Interventional Research, Dr. O.H. “Bud” Frazier, said in press materials announcing the donation. "He established lifelong relationships with his patients and encouraged all of us to do the same. Dr. Weissman’s extraordinary generosity reflects the impact Dr. Cooley still has on the Institute he founded.”

A big leap for THI and the Coogs

Looking ahead, this game-changing gift and new affiliation with UH promises big things for students, doctors, researchers, and patients.

Medical students in rotation at The Texas Heart Institute will be exposed to progressive clinical care, allowing them to gain a deep understanding of the etiology, pathophysiology and management of cardiovascular disease from prevention to the most contemporary treatments available today. This level of hands-on experience is invaluable for future physicians, and will certainly contribute to the advancement of cardiovascular medicine.

"We are honored to launch this new affiliation with Fertitta Family College of Medicine,” said Dr. Jorge Escobar, director of undergraduate medical education at The Texas Heart Institute. "With new advances in diagnostic imaging, bedside testing, and clinical trials coupled with the complex care we provide to our patients, the rotation will be an impactful experience for the students."

Pumping with growth

Meanwhile, THI recently established The Texas Heart Institute Research Innovation Fund to propel the next generation of cardiovascular research by sparking discovery, supporting innovation, and recognizing excellence in high-risk, high-reward scientific exploration.

To that end, $5 million of the Weissman bequest has been designated to match philanthropic commitments of $10,000 or greater made to THI’s Research Innovation Fund and its priority initiatives in 2023, allowing donors the opportunity to double the impact of their research investment.

Founded in 1962, THI performed the first successful heart transplant and total artificial heart implant in the United States. It has gone on to become one of the world's leading institutions for cardiovascular treatment and research.

------

This article originally ran on CultureMap.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston biotech company tests hard-to-fight cancer therapeutics

fighting cancer

A Houston-based, female-founded biotech company has developed a treatment that could prove to be an effective therapy for a rare blood cancer.

Cellenkos Therapeutics has completed promising Phase 1b testing of its Treg cell therapy, CK0804, in the fight against myelofibrosis. According to a news release from the Cellenkos team, the use of its cord-blood-derived therapeutics could signal a paradigm shift for the treatment of this hard-to-fight cancer.

Cellenkos was founded by MD Anderson Cancer Center physician and professor Simrit Parmar. Her research at the hospital displayed the ability of a unique subset of T cells’ capability to home in on a patient’s bone marrow, restoring immune balance, and potentially halting disease progression.

Myelofibrosis has long been treated primarily with JAK (Janus Kinase) inhibitors, medications that help to block inflammatory enzymes. They work by suppressing the immune response to the blood cancer, but don’t slow the progression of the malady. And they’re not effective for every patient.

“There is a significant need for new therapeutic options for patients living with myelofibrosis who have suboptimal responses to approved JAK inhibitors,” Parmar says. “We are greatly encouraged by the safety profile and early signs of efficacy observed in this patient cohort and look forward to continuing our evaluation of the clinical potential of CK0804 in our planned expansion cohort.”

The expansion cohort is currently enrolling patients with myelofibrosis. What exactly are sufferers dealing with? Myelofibrosis is a chronic disease that causes bone marrow to form scar tissue. This makes it difficult for the body to produce normal blood cells, leaving patients with fatigue, spleen enlargement and night sweats.

Myelofibrosis is rare, with just 16,000 to 18,500 people affected in the United States. But for patients who don’t respond well to JAKs, the prognosis could mean a shorter span than the six-year median survival rate outlined for the disease by Cleveland Clinic.

Helping myelofibrosis patients to thrive isn’t the only goal for Cellenkos right now.

The company seeks to aid people with rare conditions, particularly inflammatory and autoimmune disorders, with the use of CK0804, but also other candidates including one known as CK0801. The latter drug has shown promising efficacy in aplastic anemia, including transfusion independence in treated patients.

The company closed its $15 million series A round led by BVCF Management, based in Shanghai, in 2021. Read more here.

Pioneering Houston biotech startup expands to Brazil for next phase

On the Move

Houston biotech company Cemvita has expanded into Brazil. The company officially established a new subsidiary in the country under the same name.

According to an announcement made earlier this month, the expansion aims to capitalize on Brazil’s progressive regulatory framework, including Brazil’s Fuel of the Future Law, which was enacted in 2024. The company said the expansion also aims to coincide with the 2025 COP30, the UN’s climate change conference, which will be hosted in Brazil in November.

Cemvita utilizes synthetic biology to transform carbon emissions into valuable bio-based chemicals.

“For decades Brazil has pioneered the bioeconomy, and now the time has come to create the future of the circular bioeconomy,” Moji Karimi, CEO of Cemvita, said in a news release. “Our vision is to combine the innovation Cemvita is known for with Brazil’s expertise and resources to create an ecosystem where waste becomes opportunity and sustainability drives growth. By joining forces with Brazilian partners, Cemvita aims to build on Brazil’s storied history in the bioeconomy while laying the groundwork for a circular and sustainable future.”

The Fuel of the Future Law mandates an increase in the biodiesel content of diesel fuel, starting from 15 percent in March and increasing to 20 percent by 2030. It also requires the adoption of Sustainable Aviation Fuel (SAF) and for domestic flights to reduce greenhouse gas emissions by 1 percent starting in 2027, growing to 10 percent reduction by 2037.

Cemvita agreed to a 20-year contract that specified it would supply up to 50 million gallons of SAF annually to United Airlines in 2023.

"This is all made possible by our innovative technology, which transforms carbon waste into value,” Marcio Da Silva, VP of Innovation, said in a news release. “Unlike traditional methods, it requires neither a large land footprint nor clean freshwater, ensuring minimal environmental impact. At the same time, it produces high-value green chemicals—such as sustainable oils and biofuels—without competing with the critical resources needed for food production."

In 2024, Cemvita became capable of generating 500 barrels per day of sustainable oil from carbon waste at its first commercial plant. As a result, Cemvita quadrupled output at its Houston plant. The company had originally planned to reach this milestone in 2029.

---

This story originally appeared on our sister site, EnergyCapitalHTX.