Yaxin Wang leads the IDEA Lab at the Texas Heart Institute. Photo via texasheart.org

In 1969, Dr. Denton A. Cooley implanted the first total artificial heart in a living patient. Most Houstonians know Cooley’s name, but fewer can name his colleague, Dr. Domingo Liotta, who created the device. Liotta died last year at the age of 97, but his work continues at the Texas Heart Institute.

Meet Yaxin Wang, PhD. The research engineer leads the IDEA Lab at THI. IDEA stands for Innovative Device & Engineering Applications, an apt description of what Wang and her colleagues do. She’s currently focused intensely on projects that could radically change transplantation for patients in need of an artificial heart or new, healthy lungs.

Specifically, Wang is helping to develop a pediatric left ventricular assist device (NeoVAD) to mechanically pump that part of the heart in infants and small children born with heart defects.

“There aren’t a lot of options for very small kids,” explains Wang. “That’s why we’re working on an implantable LVAD for very young kids.”

In fact, as many as 14,000 children with congenital heart disease are hospitalized each year waiting for a new heart, but only around 500 pediatric transplants actually take place.

Essentially, once patients reach their teens, their chest cavities are large enough for an adult donor heart. But smaller children means smaller rib cages and fewer available hearts. For children born with heart disease, Wang’s LVAD could be a lifesaver. Because she has crafted minimally invasive devices that were developed for long-term use, patients could live far longer than before.

The project, funded by a $2.8 million NIH grant, has a big name attached. Dr. O.H. Frazier is a THI legend who claims to have performed 900 LVAD implantations, not to mention some 1,200 heart transplants. In April, the team published their initial findings regarding the success of and improvements in making rotary LVADs over the last half-century.

A different team, also led by Frazier and Wang, received a pair of grants this summer. That includes $2.8 million from the NIH and a total of $7.8 million from a DoD focused program and a THI sub-award. Their work will center on a novel centrifugal left-ventricular assist device intended for end-stage heart failure patients, a potentially safer alternative to a heart transplant.

But Wang isn’t solely focused on the heart. Working with Dr. Gabriel Loor, a cardiothoracic surgeon at Baylor College of Medicine, Wang is also responsible for a method of preserving the lungs for a longer stretch of time, which would allow for further transport, and in the more distant future, potential genetic modification before transplantation. Using animal models for the moment, “they can survive for several hours without any issues,” says Wang.

The pioneering researcher is well on her way to making a name for herself at the Texas Heart Institute and beyond. And soon, she’ll be saving countless lives.

The Texas Heart Institute recently received its largest charitable donation in its history. Photo courtesy of THI

Massive $32M gift from former patient, new UH deal pump big changes into Houston organization

all heart

Leadership at The Texas Heart Institute has two major things to celebrate. First, it just received a $32 million donation from a patient — the largest charitable donation in its history.

Shortly after that news came out, the institute announced a new partnership with the University of Houston Tilman J. Fertitta Family College of Medicine that allows those UH medical students to join a clinical rotation at The Texas Heart Institute. The alliance means valuable insights and experience with both inpatient and outpatient cardiology for UH's future doctors.

"Students will have the chance to develop their skills in the diagnosis and management of cardiovascular conditions and will be taught by outstanding clinical educators,” said Dr. Joseph G. Rogers, president and CEO of The Texas Heart Institute and heart failure specialist at The Texas Heart Institute Center for Cardiovascular Care, in a press release announcing the news.

A game-changing gift that's all heart

As for that mammoth gift, the $32 million donation comes from Dr. Frederick M. Weissman, a neurologist from New York who was a patient at the Institute 40 years ago. Fittingly, huis gift will be used to support cardiovascular research.

This isn't Weissman's first gift to the institution. That came following his experience there in the mid-1980s, when he was treated by world-renowned cardiac surgeon Dr. Denton A. Cooley.

In November of 1986, Weissman wrote a check for $5,000; another followed the next month, with a note that read, in part, “my conscience compels me to make another contribution to The Texas Heart Institute. I don’t think I could ever repay you for what you and your staff have done for me.” Weissman and Cooley would go on to be friends throughout their lives.

When Dr. Weissman died in 2005, he left The Texas Heart Institute $500,000. The organization recently received the residual of his estate — valued at more than $32 million.

“Those of us who were fortunate enough to work with and be trained by Dr. Cooley know he was much more than just an incredibly gifted surgeon," renowned transplant surgeon and Co-director of THI’s Center for Preclinical Surgical & Interventional Research, Dr. O.H. “Bud” Frazier, said in press materials announcing the donation. "He established lifelong relationships with his patients and encouraged all of us to do the same. Dr. Weissman’s extraordinary generosity reflects the impact Dr. Cooley still has on the Institute he founded.”

A big leap for THI and the Coogs

Looking ahead, this game-changing gift and new affiliation with UH promises big things for students, doctors, researchers, and patients.

Medical students in rotation at The Texas Heart Institute will be exposed to progressive clinical care, allowing them to gain a deep understanding of the etiology, pathophysiology and management of cardiovascular disease from prevention to the most contemporary treatments available today. This level of hands-on experience is invaluable for future physicians, and will certainly contribute to the advancement of cardiovascular medicine.

"We are honored to launch this new affiliation with Fertitta Family College of Medicine,” said Dr. Jorge Escobar, director of undergraduate medical education at The Texas Heart Institute. "With new advances in diagnostic imaging, bedside testing, and clinical trials coupled with the complex care we provide to our patients, the rotation will be an impactful experience for the students."

Pumping with growth

Meanwhile, THI recently established The Texas Heart Institute Research Innovation Fund to propel the next generation of cardiovascular research by sparking discovery, supporting innovation, and recognizing excellence in high-risk, high-reward scientific exploration.

To that end, $5 million of the Weissman bequest has been designated to match philanthropic commitments of $10,000 or greater made to THI’s Research Innovation Fund and its priority initiatives in 2023, allowing donors the opportunity to double the impact of their research investment.

Founded in 1962, THI performed the first successful heart transplant and total artificial heart implant in the United States. It has gone on to become one of the world's leading institutions for cardiovascular treatment and research.

------

This article originally ran on CultureMap.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston researchers develop catalyst for emission-free hydrogen production using light instead of heat

SWITCH FLIPPED

Researchers at Rice University have developed a catalyst that could render steam methane reforming, or SMR, entirely emission-free by using light rather than heat to drive the reaction.

The researchers believe the work could prove to be a breakthrough for extending catalyst lifetimes. This will improve efficiencies and reduce costs for a number of industrial processes that are affected by a form of carbon buildup that can deactivate catalysts called coking.

The new copper-rhodium photocatalyst uses an antenna-reactor design. When it is exposed to a specific wavelength of light it breaks down methane and water vapor without external heating into hydrogen and carbon monoxide. The importance of this is it is a chemical industry feedstock that is not a greenhouse gas. Rice’s work also shows that the antenna-reactor technology can overcome catalyst deactivation due to oxidation and coking by employing hot carriers to remove oxygen species and carbon deposits, which effectively regenerates the catalyst with light.

The new SMR reaction pathway build off a 2011 discovery from Peter Nordlander, Rice’s Wiess Chair and Professor of Physics and Astronomy and professor of electrical and computer engineering and materials science and nanoengineering, and Naomi Halas. They are the authors on the study about the research that was published in Nature Catalysis. The study showed that the collective oscillations of electrons that occur when metal nanoparticles are exposed to light can emit “hot carriers” or high-energy electrons and holes that can be used to drive chemical reactions.

“This is one of our most impactful findings so far, because it offers an improved alternative to what is arguably the most important chemical reaction for modern society,” Norlander says in a news release.

The research was supported by Robert A. Welch Foundation (C-1220, C-1222) and the Air Force Office of Scientific Research (FA9550-15-1-0022) with the Shared Equipment Authority at Rice providing data analysis support.

“This research showcases the potential for innovative photochemistry to reshape critical industrial processes, moving us closer to an environmentally sustainable energy future,” Halas adds.

Hydrogen has been studied as it could assist with the transition to a sustainable energy ecosystem, but the chemical process responsible for more than half of the current global hydrogen production is a substantial source of greenhouse gas emissions.Hydrogen is produced in large facilities that require the gas to be transported to its point of use. Light-driven SMR allows for on-demand hydrogen generation,which researchers believe is a key benefit for use in mobility-related applications like hydrogen fueling stations or and possibly vehicles.

------

This article originally ran on EnergyCapital.

Canadian construction co. enters Houston market amid Texas takeover

welcome to Hou

Construction tech startup Mercator.ai has entered the Houston area’s $22.3 billion commercial construction market with its AI-powered business development platform.

Calgary, Canada-based Mercator.ai says that although 80 percent of construction projects are secured through relationships, business development specialists spend about two-thirds of their time hunting for construction leads. The startup says its business development platform flips that script for the Houston area, Texas’ biggest commercial construction market.

“Houston’s construction community is known for innovation and relationship-building,” Chloe Smith, co-founder and CEO of Mercator.ai, says in a news release.

Mercator.ai says its expansion into the Houston market enables local general contractors, subcontractors, and providers of construction service to gain real-time insight into upcoming project opportunities.

“Houston’s sprawling growth and increasing competitive landscape make it ripe for innovation and the perfect next step in our Texas expansion,” Smith says.

“Our platform transforms how construction professionals discover and qualify new projects,” she adds, “reducing weeks of business development research into minutes and enabling teams to start building mutually profitable relationships at the earliest possible project stage.”

Mercator.ai, founded in 2020, announced its entry into the Texas market in April. The startup’s expansion into its first Texas market, Austin, represented its introduction to the U.S. market. Aside from Houston and Austin, Mercator.ai plans to break into the Dallas-Fort Worth and San Antonio markets.

New Houston co. transforms emergency response with geolocation, AI, and augmented reality tech

to the rescunomics

A Houston startup is innovating on safety using its geolocation, artificial intelligence, and augmented reality technology.

Rescunomics is designing technology to enhance responses to active shooter situations, fires, and rescues.The company, which provides tiered pricing, is currently working on a platform exclusively for first-responders.

Founded by CEO Emmanuel Joel, a retired captain of the Houston Fire Department, Rescunomics is using a “mission driven” approach to safety that is fueled by leveraging technology. As a part of the HFD, Joel experienced the loss of his mentor and Captain at a house fire that inspired him to take future action.

“This dark period for me inspired a vision to find a solution to this problem that has claimed 1,000 firefighter lives in structural fires in the last three decades,” Joel says in a news release. ”Since my retirement, I have focused on the growth of Rescunomics as a solution provider of innovative solutions to global safety for emergency responders.”

The company uses geolocation technology that can enable first responders to pinpoint their positions within a building to a precise location. By collaborating with geolocation service company NextNav, Rescunomics can integrate a nationwide mesh network,which will ensure accurate Z-axis data in real-time. This can still occur even when GPS fails. Rescunomics’ partnership with T-Mobile uses their 5G low-band network to provide affordable geolocation services.

With a voice-activated Hērōs AI chatbot, Rescunomics can provide instant guidance in high-pressure situations. By using predictive analytics, users can optimize resource allocation during large-scale disasters by utilizing IoT connectivity and SMART analytics with the Hērōs platform. The platform also utilizes its Indoor Mapping Data Format (IMDF). The IMDF allows users access to customized indoor maps of venues like stadiums, airports, and campuses.

For active shooter situations, Rescunomics says its discreet SOS signaling system can enable individuals to alert law enforcement directly.Rescunomics says 60 percent of shooting events end before law enforcement arrives.

Going beyond training purposes, Rescunomics' AR lens technology can arm responders with thermal imaging and VR-enhanced visuals via helmet-mounted displays to help monitor live incident footage.

The Detroit Fire Department is just one of the departments in the U.S. using technology similar to this, as the department is in a pilot program using Safety Cloud by HAAS Alert.