The benefits of construction digital twins, such as improved planning and design, streamlined collaboration, and effective risk management, are transforming how projects are executed. Photo via Getty Images

The construction industry is no stranger to embracing technological advancements, and one of the latest breakthroughs is the advent of construction digital twin technology.

Blending the virtual and physical worlds, construction digital twins offer immense potential for enhancing efficiency, reducing costs, and improving decision-making in construction projects.

It is a fascinating and ever-changing world of technology in construction digital twin technology and the following information explores its key components, benefits, and real-world applications in the construction sector.

What is a construction digital twin?

A construction digital twin is a virtual replica of a physical asset, process, or system that integrates real-time data from various sources to provide a holistic and dynamic representation. It encompasses a portion of the entire lifecycle of the project, potentially starting from planning and design into construction, commissioning, and data collection for ongoing maintenance.

The key components of a construction digital twin include the physical asset, sensors, data acquisition systems, connectivity infrastructure, cloud platforms, and advanced analytics. Various tools or platforms can be used at different stages of a project.

Skanska, a construction and development company, has created an internal hybrid approach combining a digital twin model with a custom analytics dashboard. The process allows for tracking production control during construction. What is used is a less-is-more approach to manual data entry into models and link to automated external data sources, which are combined and analyzed together in a separate dashboard. These color-coded models are combined with external data for schedule, cost, and man hour data for predictive analysis and production rates.

Improved planning and design

Digital twins allow design and construction professionals to simulate and optimize designs with a virtual model of the building before physically implementing them. This capability enables early detection and resolution of design flaws, reducing rework and costly delays. Adjacent building and city data can inform early design decisions. By leveraging the existing data from a digital twin, renovation projects can streamline processes, reduce risks, improve efficiency, and make informed design decisions, ultimately resulting in more successful and cost-effective renovations.

Enhanced construction processes

A construction digital twin allows stakeholders to visualize and simulate the project, analyze potential issues, optimize workflows, and make informed decisions. Key data sources include: installation, schedule, man hours, and cost. Additional real-time data from sensors embedded in physical assets can be fed into construction digital twins, enabling real-time monitoring and analysis. Project teams can enhance collaboration, improve efficiency, maintain schedule, reduce costs, and minimize risks throughout the construction process.

Effective risk management

Digital twins enable construction companies to simulate and analyze potential risks, such as structural weaknesses and environmental or safety hazards. Builders and their clients are at an advantage since they can address these risks in the virtual environment and significantly reduce the occurrence of accidents and associated liabilities.

Streamlined collaboration

Construction digital twins act as a shared platform for all stakeholders involved in a construction project, including architects, engineers, contractors, and facility managers. This flow of information fosters seamless collaboration, improves communication, and results in better decision-making through a data-driven environment. Solutions vary per stage and parties involved.

Real-world applications

Construction digital twin technology is already finding practical application in the construction industry, including locally at 1550 on The Green, Skanska’s state-of-the art, sustainable office building bringing the outdoors in.

Smart building construction

By creating a digital twin of a smart building, companies can optimize energy efficiency, HVAC systems, and space. The real-time monitoring of energy consumption and occupancy patterns combined with as-built BIM and systems data allows for predictive maintenance. Automations and AI assisted controls are also on the horizon.

Bringing it all together

Construction digital twin technology is poised to revolutionize the construction industry. By merging the virtual and physical realms, it enables construction professionals to make more informed decisions, enhance efficiency, and minimize risks.

The benefits of construction digital twins, such as improved planning and design, streamlined collaboration, and effective risk management, are transforming how projects are executed. As this technology continues to evolve, there are bound to be greater advancements in construction practices, ultimately leading to safer, smarter, and more sustainable built environments. Key data points and use cases vary per phase and stakeholder, and digital twins are a great asset throughout the project lifecycle.

------

Edwin Bailey is senior preconstruction technologist at Skanska, a leading multi-national project development and construction group, in Houston.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston researchers develop material to boost AI speed and cut energy use

ai research

A team of researchers at the University of Houston has developed an innovative thin-film material that they believe will make AI devices faster and more energy efficient.

AI data centers consume massive amounts of electricity and use large cooling systems to operate, adding a strain on overall energy consumption.

“AI has made our energy needs explode,” Alamgir Karim, Dow Chair and Welch Foundation Professor at the William A. Brookshire Department of Chemical and Biomolecular Engineering at UH, explained in a news release. “Many AI data centers employ vast cooling systems that consume large amounts of electricity to keep the thousands of servers with integrated circuit chips running optimally at low temperatures to maintain high data processing speed, have shorter response time and extend chip lifetime.”

In a report recently published in ACS Nano, Karim and a team of researchers introduced a specialized two-dimensional thin film dielectric, or electric insulator. The film, which does not store electricity, could be used to replace traditional, heat-generating components in integrated circuit chips, which are essential hardware powering AI.

The thinner film material aims to reduce the significant energy cost and heat produced by the high-performance computing necessary for AI.

Karim and his former doctoral student, Maninderjeet Singh, used Nobel prize-winning organic framework materials to develop the film. Singh, now a postdoctoral researcher at Columbia University, developed the materials during his doctoral training at UH, along with Devin Shaffer, a UH professor of civil engineering, and doctoral student Erin Schroeder.

Their study shows that dielectrics with high permittivity (high-k) store more electrical energy and dissipate more energy as heat than those with low-k materials. Karim focused on low-k materials made from light elements, like carbon, that would allow chips to run cooler and faster.

The team then created new materials with carbon and other light elements, forming covalently bonded sheetlike films with highly porous crystalline structures using a process known as synthetic interfacial polymerization. Then they studied their electronic properties and applications in devices.

According to the report, the film was suitable for high-voltage, high-power devices while maintaining thermal stability at elevated operating temperatures.

“These next-generation materials are expected to boost the performance of AI and conventional electronics devices significantly,” Singh added in the release.

Houston to become 'global leader in brain health' and more innovation news

Top Topics

Editor's note: The most-read Houston innovation news this month is centered around brain health, from the launch of Project Metis to Rice''s new Amyloid Mechanism and Disease Center. Here are the five most popular InnovationMap stories from December 1-15, 2025:

1. Houston institutions launch Project Metis to position region as global leader in brain health

The Rice Brain Institute, UTMB's Moody Brain Health Institute and Memorial Hermann’s comprehensive neurology care department will lead Project Metis. Photo via Unsplash.

Leaders in Houston's health care and innovation sectors have joined the Center for Houston’s Future to launch an initiative that aims to make the Greater Houston Area "the global leader of brain health." The multi-year Project Metis, named after the Greek goddess of wisdom and deep thought, will be led by the newly formed Rice Brain Institute, The University of Texas Medical Branch's Moody Brain Health Institute and Memorial Hermann’s comprehensive neurology care department. The initiative comes on the heels of Texas voters overwhelmingly approving a ballot measure to launch the $3 billion, state-funded Dementia Prevention and Research Institute of Texas (DPRIT). Continue reading.

2.Rice University researchers unveil new model that could sharpen MRI scans

New findings from a team of Rice University researchers could enhance MRI clarity. Photo via Unsplash.

Researchers at Rice University, in collaboration with Oak Ridge National Laboratory, have developed a new model that could lead to sharper imaging and safer diagnostics using magnetic resonance imaging, or MRI. In a study published in The Journal of Chemical Physics, the team of researchers showed how they used the Fokker-Planck equation to better understand how water molecules respond to contrast agents in a process known as “relaxation.” Continue reading.

3. Rice University launches new center to study roots of Alzheimer’s and Parkinson’s

The new Amyloid Mechanism and Disease Center will serve as the neuroscience branch of Rice’s Brain Institute. Photo via Unsplash.

Rice University has launched its new Amyloid Mechanism and Disease Center, which aims to uncover the molecular origins of Alzheimer’s, Parkinson’s and other amyloid-related diseases. The center will bring together Rice faculty in chemistry, biophysics, cell biology and biochemistry to study how protein aggregates called amyloids form, spread and harm brain cells. It will serve as the neuroscience branch of the Rice Brain Institute, which was also recently established. Continue reading.

4. Baylor center receives $10M NIH grant to continue rare disease research

BCM's Center for Precision Medicine Models has received funding that will allow it to study more complex diseases. Photo via Getty Images

Baylor College of Medicine’s Center for Precision Medicine Models has received a $10 million, five-year grant from the National Institutes of Health that will allow it to continue its work studying rare genetic diseases. The Center for Precision Medicine Models creates customized cell, fly and mouse models that mimic specific genetic variations found in patients, helping scientists to better understand how genetic changes cause disease and explore potential treatments. Continue reading.

5. Luxury transportation startup connects Houston with Austin and San Antonio

Shutto is a new option for Houston commuters. Photo courtesy of Shutto

Houston business and leisure travelers have a luxe new way to hop between Texas cities. Transportation startup Shutto has launched luxury van service connecting San Antonio, Austin, and Houston, offering travelers a comfortable alternative to flying or long-haul rideshare. Continue reading.

Texas falls to bottom of national list for AI-related job openings

jobs report

For all the hoopla over AI in the American workforce, Texas’ share of AI-related job openings falls short of every state except Pennsylvania and Florida.

A study by Unit4, a provider of cloud-based enterprise resource planning (ERP) software for businesses, puts Texas at No. 49 among the states with the highest share of AI-focused jobs. Just 9.39 percent of Texas job postings examined by Unit4 mentioned AI.

Behind Texas are No. 49 Pennsylvania (9.24 percent of jobs related to AI) and No. 50 Florida (9.04 percent). One spot ahead of Texas, at No. 47, is California (9.56 percent).

Unit4 notes that Texas’ and Florida’s low rankings show “AI hiring concentration isn’t necessarily tied to population size or GDP.”

“For years, California, Texas, and New York dominated tech hiring, but that’s changing fast. High living costs, remote work culture, and the democratization of AI tools mean smaller states can now compete,” Unit4 spokesperson Mark Baars said in a release.

The No. 1 state is Wyoming, where 20.38 percent of job openings were related to AI. The Cowboy State was followed by Vermont at No. 2 (20.34 percent) and Rhode Island at No. 3 (19.74 percent).

“A company in Wyoming can hire an AI engineer from anywhere, and startups in Vermont can build powerful AI systems without being based in Silicon Valley,” Baars added.

The study analyzed LinkedIn job postings across all 50 states to determine which ones were leading in AI employment. Unit4 came up with percentages by dividing the total number of job postings in a state by the total number of AI-related job postings.

Experts suggest that while states like Texas, California and Florida “have a vast number of total job postings, the sheer volume of non-AI jobs dilutes their AI concentration ratio,” according to Unit4. “Moreover, many major tech firms headquartered in California are outsourcing AI roles to smaller, more affordable markets, creating a redistribution of AI employment opportunities.”