Sarah Hein, co-founder and CEO of March Biosciences, joins the Houston Innovators Podcast to discuss how the company will use its series A funding. Photo via march.bio

When cancer originates in a patient, their body fights as hard as it can against the disease, but sometimes, the cancer wins the battle. However, one Houston cell therapy startup is working on an artillery of therapeutics to help arm patients' bodies to win the war.

Founded in 2022, March Biosciences is a cell therapy company born in part out of the Texas Medical Center's Accelerator for Cancer Therapeutics, where Sarah Hein served as inaugural entrepreneur in residence. In that role, she met her co-founders Max Mamonkin and Malcolm Brenner.

Now, leading the startup as CEO, Hein tells the Houston Innovators Podcast that with March's lead product, MB-105, an autologous CD5 CAR T cell therapy, the name of the game is to zero in on advancing this particular treatment to its phase II trial next year.

"Targeted therapies are targeted. Our target is expressed on these T-cell cancers, and there are a couple other cancers, like Mantle Cell Lymphoma or Chronic Lymphocytic Leukemia," Hein says on the show. "Unfortunately, I don't think there's ever going to be a magic bullet that is going to hit a huge swath of these cancers. We're going to continue to chip away at these cancers by creating really elegantly engineered therapies against these different kinds of tumors.

"March, in general, is committed to this idea that we're going to continue to work on difficult tumors and different targets with our uniquely engineered targeting strategy against these diseases. As we expand into the next year, you'll see us speak on this a little more on how we're going to continue to work on new diseases that havent been addressed previously," she continues.

Hein explains how March Biosciences — named in part as a nod to one of Houston's best months weather wise — has benefitted from the support of the local life science community. Last year, March announced its partnership with CTMC (Cell Therapy Manufacturing Center), a joint venture between MD Anderson Cancer Center and National Resilience. Hein says over the past year, they've moved into CTMC and that's allowed them to accelerate their progress as a company.

"Houston has a unique sophistication in cell therapy. Where we've had biotech spinout, cell therapy has been one of our more successful verticals," she says. "We've had resources and knowledge here that were uniquely available for our drug category."

Earlier this month, March Biosciences announced an oversubscribed $28.4 million series A led by Mission BioCapital and 4BIO Capital and bringing the company's total funding secured to more than $51 million, including its prestigious CPRIT grant. Hein says this funding will go toward further developing March's therapeutics and team as it gears up for its phase II trial next year.

Ultimately, Hein explains on the show how passionate she is and her team is on continuing to develop treatments to fight cancer with their targeted approach.

"I never have to explain to people why we would go out and fight cancer. I think it's a self-evident hypothesis," she says. "But what I personally find is exciting in cancer therapies in general are these immune therapies, where you using the body's own immune system to seek out and destroy the cancer cells.

"What's really exciting about that is these are the same immune cells that fight cancer or pre-cancers for most of your life and usually what happens is the cancers figure out a way to mass themselves. With modern approaches, we can boost the immune system."

The Texas Medical Center's ACT program is making sure the most-promising cancer research makes it to its life-saving commercialization stage. Photo via tmc.edu

Houston program buoys promising cancer research with live-saving innovation

act-ing now

How do you bring promising cancer research to the masses? TMC Innovation's Accelerator for Cancer Therapeutics was established with that question in mind.

Funded by a $5 million grant from CPRIT, or the Cancer Prevention and Research Institute of Texas, in 2019 and in collaboration with the Gulf Coast Consortia and the University of Texas Medical Branch, the first cohort began their intensive work in 2021. The deadline to join the next cohort is October 13.

Since its inception, ACT has seen the forming of 19 companies — two of which have been awarded CPRIT seed grants, along with four in contention for one this year — as well as $92 million in dilutive funding and $10 million in non-dilutive funding.

“We’ve recruited investigators and companies from the breadth and width of the state of Texas, so all the way from Lubbock to Galveston from Dallas to the Rio Grande Valley,” Ahmed AlRawi, program manager, tells InnovationMap. “We've had an amazing set of investigators who have gone through the program — 56 teams to be precise.”

AlRawi says that the first pillar of the program is education. To that end, the cohort works with entrepreneurs in residence like Michael Torres. Best known as the co-founder of ReCode Therapeutics, Torres says that one of his greatest passions lies in translating science into medicines. ReCode is a genetic medicines company that is currently clinical-stage. It’s raised more than $300 million in the last two years, certainly something to which scientist-entrepreneurs earlier in their careers would aspire.

A longtime resident of Dallas, Torres moved his family to Houston last year, calling it “the place to be for cancer startups in Texas.”

Initially, says Torres, Houston wasn’t on his radar. But thanks to a call from ACT external advisor Dan Hargrove, Torres realized that the city might be a fit for him and his goals.

“I wanted to find a project that I could help support, sort of take my experience as a cofounder and help guide the next great startup within the ecosystem,” he says.

Torres and AlRawi agree that the biggest successes to come out of ACT so far include March Biosciences, a company from the first cohort, which is focused on developing CAR-T cell strategies to help combat hematological cancers; CPRIT fundee, OmniNano Pharmaceuticals, which uses patented nanotechnology to co-deliver a pair of therapeutical agents to solid tumors; and the latest, CrossBridge Bio.

Part of the most recent cohort, Torres has joined Drs. Kyoji Tsuchikama and Zhiqiang An as the last company’s CEO. To that end, he’s partnered with the world-class researchers out of UT Health Houston to build a next-generation antibody drug conjugate company that he believes will produce “better and safer and more effective drugs than what's currently on the market today.”

All the more reason that Torres he’s glad to have moved to Houston at what he calls “a really exciting time.” He’s thankful for the Texas Medical Center and the relationships it fosters. “We're all sort of aligning on creating a sustainable biotech ecosystem,” he says. And the next big cancer fighting company may well emerge from ACT.

7 Hills Pharma, an innovative immunotherapy company, was awarded a $13.5 million grant from the Cancer Prevention and Research Institute of Texas. Photo via Getty Images

Houston immunotherapy company to use $13.5M grant to further develop cancer treatments

future of pharma

Between Bangalore and Chennai in the Indian state of Andhra Pradesh, you’ll find the town of Tirupati. It’s home to seven peaks that host a Hindu temple complex devoted to a form of Vishnu, Venkateshvara. It is also the region from which Upendra Marathi originally hails. It’s where his father, and many other family members, attended medical school.

“My father’s first job was to take care of the pilgrims,” recalls Marathi.

It's only natural that his groundbreaking Houston company would be named 7 Hills Pharma.

“That sort of selflessness and giving back, I wanted to embody it in the name of the company,” Marathi says.

Now, 7 Hills Pharma is announcing that last month, it was awarded a $13.5 million grant from the Cancer Prevention and Research Institute of Texas (CPRIT). That’s on top of more than $13 million in NIH grants, making the company the second largest recipient of SBIR/STTR grants in Texas.

Launched in 2016, 7 Hills Pharma is working to develop drugs that can overcome the all-too-common problem of immunotherapy resistance. Thanks to the Nobel Prize-winning work of Jim Allison in the realm of immuno-oncology, the field was “very hot” at the time, says Marathi, particularly in Houston.

So what has 7 Hills developed? Oral small molecules that activate integrins — the receptors that allow cells to bind to one another — allowing for the cell-to-cell interactions that create a successful immune response to immune checkpoint inhibitors such as Yervoy. In other words, they have created capsules that increase the effectiveness of drugs that allow the body’s own immune response to fight cancers.

But that’s not all. Tests have shown that the same discovery, called alintegimod, can also augment the effectiveness of vaccines. The pill, which co-founder and co-inventor Peter Vanderslice calls “a beautiful way to amplify the vaccines,” can potentially be applied to anything from influenza to coronavirus.

Their greatest challenge, says Vanderslice, is the very fact that the technology is so novel.

“Most large pharmas are very risk averse,” he explains. “They only want to do ‘me-too’ kinds of drugs.”

7 Hills Pharma is the third company Marathi, both a PhD and an MBA, has helped to found based on technology he co-invented. Vanderslice is director of the molecular cardiology research laboratories at The Texas Heart Institute.

“It’s very much a homegrown company,” Marathi says.

And a small one, at least for now. Working out of JLabs@TMC, the full-time team is currently just Marathi and Siddhartha De, the senior director of development. Marathi convinced De to transplant himself and his family from India for the purpose of assisting 7 Hills with preparing its drugs for clinical readiness.

The CPRIT funds will allow 7 Hills Pharma to hire several long-time team members full-time and with benefits.

“The bringing of talent and bringing of technology to TMC and what was born at Texas Heart Institute is rather remarkable,” says Rob Bent, the company’s director of operations.

The next step for 7 Hills Pharma is a Phase Ib/IIa clinical trial in patients with treatment-resistant solid tumors. And the team just finalized the deck that will help raise another $10 million to $250 million in the company’s series A. And hopefully sooner rather than later, a new set of medical pilgrims will be thanking 7 Hill Pharma for its care.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Rice University launches hub in India to drive education, tech innovation abroad

global mission

Rice University is launching Rice Global India, which is a strategic initiative to expand India’s rapidly growing education and technology sectors.

“India is a country of tremendous opportunity, one where we see the potential to make a meaningful impact through collaboration in research, innovation and education,” Rice President Reginald DesRoches says in a news release. “Our presence in India is a critical step in expanding our global reach, and we are excited to engage more with India’s academic leaders and industries to address some of the most pressing challenges of our time.”

The new hub will be in the country’s third-largest city and the center of the country’s high-tech industry, Bengaluru, India, and will include collaborations with top-tier research and academic institutions.

Rice continues its collaborations with institutions like the Indian Institute of Technology (IIT) Kanpur and the Indian Institute of Science (IISc) Bengaluru. The partnerships are expected to advance research initiatives, student and faculty exchanges and collaborations in artificial intelligence, biotechnology and sustainable energy.

India was a prime spot for the location due to the energy, climate change, artificial intelligence and biotechnology studies that align with Rice’s research that is outlined in its strategic plan Momentous: Personalized Scale for Global Impact.

“India’s position as one of the world’s fastest-growing education and technology markets makes it a crucial partner for Rice’s global vision,” vice president for global at Rice Caroline Levander adds. “The U.S.-India relationship, underscored by initiatives like the U.S.-India Initiative on Critical and Emerging Technology, provides fertile ground for educational, technological and research exchanges.”

On November 18, the university hosted a ribbon-cutting ceremony in Bengaluru, India to help launch the project.

“This expansion reflects our commitment to fostering a more interconnected world where education and research transcend borders,” DesRoches says.

UH-backed project secures $3.6M to transform CO2 into sustainable fuel with cutting-edge tech

funds granted

A University of Houston-associated project was selected to receive $3.6 million from the U.S. Department of Energy’s Advanced Research Projects Agency-Energy that aims to transform sustainable fuel production.

Nonprofit research institute SRI is leading the project “Printed Microreactor for Renewable Energy Enabled Fuel Production” or PRIME-Fuel, which will try to develop a modular microreactor technology that converts carbon dioxide into methanol using renewable energy sources with UH contributing research.

“Renewables-to-liquids fuel production has the potential to boost the utility of renewable energy all while helping to lay the groundwork for the Biden-Harris Administration’s goals of creating a clean energy economy,” U.S. Secretary of Energy Jennifer M. Granholm says in an ARPA-E news release.

The project is part of ARPA-E’s $41 million Grid-free Renewable Energy Enabling New Ways to Economical Liquids and Long-term Storage program (or GREENWELLS, for short) that also includes 14 projects to develop technologies that use renewable energy sources to produce sustainable liquid fuels and chemicals, which can be transported and stored similarly to gasoline or oil, according to a news release.

Vemuri Balakotaiah and Praveen Bollini, faculty members of the William A. Brookshire Department of Chemical and Biomolecular Engineering, are co-investigators on the project. Rahul Pandey, is a UH alum, and the senior scientist with SRI and principal investigator on the project.

Teams working on the project will develop systems that use electricity, carbon dioxide and water at renewable energy sites to produce renewable liquid renewable fuels that offer a clean alternative for sectors like transportation. Using cheaper electricity from sources like wind and solar can lower production costs, and create affordable and cleaner long-term energy storage solutions.

Researchers Rahul Pandey, senior scientist with SRI and principal investigator (left), and Praveen Bollini, a University of Houston chemical engineering faculty, are key contributors to the microreactor project. Photo via uh.edu

“As a proud UH graduate, I have always been aware of the strength of the chemical and biomolecular engineering program at UH and kept myself updated on its cutting-edge research,” Pandey says in a news release. “This project had very specific requirements, including expertise in modeling transients in microreactors and the development of high-performance catalysts. The department excelled in both areas. When I reached out to Dr. Bollini and Dr. Bala, they were eager to collaborate, and everything naturally progressed from there.”

The PRIME-Fuel project will use cutting-edge mathematical modeling and SRI’s proprietary Co-Extrusion printing technology to design and manufacture the microreactor with the ability to continue producing methanol even when the renewable energy supply dips as low as 5 percent capacity. Researchers will develop a microreactor prototype capable of producing 30 MJe/day of methanol while meeting energy efficiency and process yield targets over a three-year span. When scaled up to a 100 megawatts electricity capacity plant, it can be capable of producing 225 tons of methanol per day at a lower cost. The researchers predict five years as a “reasonable” timeline of when this can hit the market.

“What we are building here is a prototype or proof of concept for a platform technology, which has diverse applications in the entire energy and chemicals industry,” Pandey continues. “Right now, we are aiming to produce methanol, but this technology can actually be applied to a much broader set of energy carriers and chemicals.”

------

This article originally ran on EnergyCapital.

Houston innovator drives collaboration, access to investment with female-focused group

HOUSTON INNOVATORS PODCAST EPISODE 262

After working in technology in her home country of Pakistan, Samina Farid, who was raised in the United States, found her way to Houston in the '70s where business was booming.

She was recruited to work at Houston Natural Gas — a company that would later merge and create Enron — where she rose through the ranks and oversaw systems development for the company before taking on a role running the pipelines.

"When you're in technology, you're always looking for inefficiencies, and you always see areas where you can improve," Farid says on the Houston Innovators Podcast, explaining that she moved on from Enron in the mid-'80s, which was an exciting time for the industry.

"We had these silos of data across the industry, and I felt like we needed to be communicating better, having a good source of data, and making sure we weren't continuing to have the problems we were having," she says. "That was really the seed that got me started in the idea of building a company."

She co-founded Merrick Systems, a software solutions business for managing oil and gas production, with her nephew, and thus began her own entrepreneurial journey. She came to another crossroads in her career after selling that business in 2014 and surviving her own battle with breast cancer.

"I got involved in investing because the guys used to talk about it — there was always men around me," Farid says. "I was curious."

In 2019, she joined an organization called Golden Seeds. Founded in 2005 in New York, the network of angel investors funding female-founded enterprises has grown to around 280 members across eight chapters. Suzan Deison, CEO of the Houston Women's Chamber, was integral in bringing the organization to Houston, and now Farid leads it as head of the Houston Chapter of Golden Seeds.

For Farid, the opportunity for Houston is the national network of investors — both to connect local female founders to potential capital from coast to coast and to give Houston investors deal flow from across the country.

"It was so hard for me to get funding for my own company," Farid says. "Having access to capital was only on the coasts. Software and startups was too risky."

Now, with Golden Seeds, the opportunity is there — and Farid says its an extremely collaborative investor network, working with local organizations like the Houston Angel Network and TiE Houston.

"With angel investing, when we put our money in, we want these companies to succeed," she says."We want more people to see these companies and to invest in them. We're not competing. We want to work with others to help these companies succeed."