Corporations can do more than just throw money at innovation efforts. Photo via Getty Images

I vividly remember, it was a typical Tuesday at Houston Exponential, and I’m sipping maybe my third coffee of the morning when the phone rings.

On the line is yet another hopeful voice from a newly minted innovation group at a "big company." They lay out their vision: “We’ve got this new innovation group! It’s me — a tech enthusiast who’s been yelling into the corporate void about needing to shake things up for the last two decades — plus a data scientist who loves numbers more than people, and a procurement guy who… well, procures stuff. And here’s the kicker: they’ve handed us $60 million to put to work. But here’s the catch — this treasure needs to be turned into a groundbreaking innovation that will dazzle the C-Suite, in about six months.”

I chuckle then sigh, because I’ve heard this story not once or twice, but about a dozen times over. And unfortunately, each of those grand plans crashed faster than a shooting star burning out over the Texas night sky — brilliant, swift, and leaving us wondering what might have been. Why? Well, let’s dig into some observations from my time working with institutional innovators from around the world and uncover just why throwing money at innovation like confetti at a wedding isn’t the quick fix big companies hope it will be.

The big miss here is a deep understanding of and ability to articulate the challenges. Innovation isn’t a highway where you can just press the gas and speed straight to Mt. Scale. It’s more like a winding country road with breathtaking views, unexpected potholes, and the occasional bewildered chicken crossing your path. For institutional innovators — the brave souls charting the course through this ever-changing landscape — the journey is filled with excitement, challenges, and the promise of discovery.

In my first hand experience mentoring over 500 startups and corporations, I’ve seen that the magic of innovation doesn’t come from a deep-pocketed budget but from a deep understanding of the problems we aim to solve. If you can view challenges through a kaleidoscope of perspectives, not just through the monochrome lens of one industry, you find the alternate routes that, while not exactly shortcuts, do keep you from turning down dark alleys and dead ends. A key observation here is that solutions to hard problems often lie in adjacent industries.

For example, consider how biomimicry has led to inventions like Velcro, inspired by burrs' ability to stick to animal fur, or how bullet trains in Japan were designed to mimic the kingfisher's beak for better aerodynamics. These are just a few examples of how solutions to complex problems often reside right in front of us or in the industry next door. Right here in Houston, Pumps & Pipes is a glowing example of how experts from Energy, Life Science and Space converge on similar problem sets with wildly different perspectives and applications.

Imagine if the engineers at NASA sat down for tacos with teachers from the local high school, or if doctors brainstormed with video game designers over a game of pickleball. Sounds fun, right? But it’s also where the magic happens. When we step out of our industry bubbles, we find that the solutions to our biggest problems often come from the most unexpected places.

So how do we begin to find these solutions? It all starts with a clear and clearly articulated challenge statement.

A crucial factor in encouraging organizations to look beyond traditional industry boundaries is to foster a deep understanding of problem-solution fit (you can read more about Problem - Solution fit in my last article here) and that means a deep understanding of the Problem. By guiding problem holders to dig deep into the nuances of the problems they aim to address, we expand their perspective. Once a comprehensive grasp of the problems are established, new pathways for solutions organically emerge. To do this you must broaden the collective thinking to the point where solutions from other industries become not just viable but often the most effective approach. My favorite quote on this subject is that “people don’t need a ¼ inch drill bit, they need a ¼ inch hole, and really they don’t need a ¼ hole, they need to hang a picture and when framed in that context, a command strip is more effective at solving the problem.”

So how do we do this? It’s easy, just continuously ask "why" or “why does this matter to your customer” to peel back the layers of the initial problem statements to reveal underlying causes or first principles. Ok this is actually much harder than it sounds but when organizations are guided through exercises to distill their challenges into first principles and more universal problem statements, a transformation occurs, resulting in several benefits:

  1. Expanding Solution Horizons: By elevating the problem discussion beyond industry-specific issues, the range of potential solutions widens remarkably.
  2. Universal Problem Statements: Restating the issues into more universal terms unlocks innovative approaches and solutions previously unseen.
  3. Enhanced Solution Fit and Success Probability: This reframing leads to solutions that are not only more fitting but also stand a higher chance of successfully being adopted and integrated and thus resolving the underlying issues.
  4. Increased Buy-In: These solutions are and are perceived as more novel and thus receive increased buy-in across the organization when moving towards adoption.

The critical lesson here is the power of abstracting the problem. By pulling back from the immediate and specific issues and reinterpreting them into broader, more universally applicable challenges, we can tap into a richer vein of solutions. This approach not only broadens the scope of potential innovations but also increases the alignment and effectiveness of the solutions we pursue.

The art of crafting challenge statements that are both broad enough to inspire innovative thinking and specific enough to be actionable is crucial. These statements serve as beacons, guiding both internal and external innovation efforts towards solutions that are not bound by conventional industry norms. By framing challenges in a way that invites diverse perspectives, organizations unlock innovative solutions that transcend traditional boundaries, fostering a more expansive and inclusive approach to problem-solving.

Turning lofty ambitions into tangible results begins with understanding that innovation isn’t just about flashy gadgets or the latest buzzwords. It’s about solving real problems for real people. This means rolling up our sleeves, listening intently, and sometimes realizing that the solution isn’t a high-tech wonder but perhaps something as simple and elegant as a command strip instead of a hole in the wall.

------

Jon Nordby is managing partner at Anthropy Partners, a Houston-based investment firm, and professor of entrepreneurship at the University of Houston.

A new program within Rice University's Executive Education school will foster education for corporate innovation. Photo courtesy of Rice

New program at Rice University to educate corporate leaders on innovation

tables have turned

As important as it is to foster innovation among startups, there's another side of the equation that needs to be addressed, and a new program at Rice University plans to do exactly that.

Executive Education at Rice University's Jones Graduate School of Business, which creates peer-based learning and professional programs for business leaders, has created a new program called Corporate Innovation. The program came about as Executive Education, which has existed since the '70s, has evolved over the past few years to create courses and programs that equip business leaders with key management tools in a holistic way.

"We realized we need to open the innovation box," says Zoran Perunovic, director of Executive Education and is also a member of the Innovation Corridor committee and a mentor at TMCx.

The program, which is open for registration and will take place September 28-30, will flip the script on how innovation is normally discussed and observed and instead take a holistic approach to innovation in a corporate setting.

"In the innovation space, you have two lines — one is the entrepreneurial and the other is happening in large, established organizations," Perunovic tells InnovationMap. "The mechanisms of innovation within in those companies are different than the entrepreneurial."

The course's professor is Jing Zhou, Mary Gibbs Jones Professor of Management and Psychology – Organizational Behavior, and she says that when people think "innovation" they think of startups or technology. However, when it comes to innovation at the corporate level, it's so much more than that.

"In the past, we think about corporate innovation, we think about technological advancements. Because we have so many world-class organizations in Houston, we feel like we are doing a good job," Zhou says.

"Innovation definitely includes technology, but it also involves new business models, new way of meeting customers, new work processes — everything we do in a large corporation, there's always a better way of doing it. That's our definition of our corporate innovation."

Zoran Perunovic (left) anf Jing Zhou created the Corporate Innovation program housed in Rice's Executive Education department. Photos courtesy of Rice

Zhou and Perunovic designed the program to target business professionals from all areas of the corporate world.

"People, managers, professionals, executives in all functional areas of business can benefit from this program," Zhou says. "We don't teach to just one function area. We teach the fundamental principles of how to drive innovation and broaden the cognitive space."

Perunovic concurs with his colleague and adds that, "everyone is relevant — that's the future of innovation." Another aspect of the program that's forward thinking is the idea of cross-industry innovation collaboration.

"In all our programs, especially this one, we are not encouraging members from one type of industry to join. We want diversity of industry," Perunovic says.

The program has an advisory board comprised of business leaders in Houston. The program's board is made up of:

  • Tanya Acevedo, chief technology officer of Houston Airport System
  • Barbara Burger, vice president of innovation at Chevron and president of Chevron Technology Ventures
  • Gareth Burton, vice president of technology at American Bureau of Shipping
  • David Hatrick, vice president of innovation at Huntsman Advanced Materials
  • Roberta L. Schwartz, executive vice president and chief innovation officer at Houston Methodist

Industry, position, and company notwithstanding, the program has value across the board in Houston, now more than ever.

"Innovation is no longer optional for large organizations," Zhou says. "It's required in whatever you do, and whatever space you're competing in."

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston engineers develop breakthrough device to advance spinal cord treatment

future of health

A team of Rice University engineers has developed an implantable probe over a hundred times smaller than the width of a hair that aims to help develop better treatments for spinal cord disease and injury.

Detailed in a recent study published in Cell Reports, the probe or sensor, known as spinalNET, is used to explore how neurons in the spinal cord process sensation and control movement, according to a statement from Rice. The research was supported by the National Institutes of Health, Rice, the California-based Salk Institute for Biological Studies, and the philanthropic Mary K. Chapman Foundation based in Oklahoma.

The soft and flexible sensor was used to record neuronal activity in freely moving mice with high resolution for multiple days. Historically, tracking this level of activity has been difficult for researchers because the spinal cord and its neurons move so much during normal activity, according to the team.

“We developed a tiny sensor, spinalNET, that records the electrical activity of spinal neurons as the subject performs normal activity without any restraint,” Yu Wu, a research scientist at Rice and lead author of the study said in a statement. “Being able to extract such knowledge is a first but important step to develop cures for millions of people suffering from spinal cord diseases.”

The team says that before now the spinal cord has been considered a "black box." But the device has already helped the team uncover new findings about the body's rhythmic motor patterns, which drive walking, breathing and chewing.

Lan Luan (from left), Yu Wu, and Chong Xie are working on the breakthrough device. Photo by Jeff Fitlow/Rice University

"Some (spinal neurons) are strongly correlated with leg movement, but surprisingly, a lot of neurons have no obvious correlation with movement,” Wu said in the statement. “This indicates that the spinal circuit controlling rhythmic movement is more complicated than we thought.”

The team said they hope to explore these findings further and aim to use the technology for additional medical purposes.

“In addition to scientific insight, we believe that as the technology evolves, it has great potential as a medical device for people with spinal cord neurological disorders and injury,” Lan Luan, an associate professor of electrical and computer engineering at Rice and a corresponding author on the study, added in the statement.

Rice researchers have developed several implantable, minimally invasive devices to address health and mental health issues.

In the spring, the university announced that the United States Department of Defense had awarded a four-year, $7.8 million grant to the Texas Heart Institute and a Rice team led by co-investigator Yaxin Wang to continue to break ground on a novel left ventricular assist device (LVAD) that could be an alternative to current devices that prevent heart transplantation.

That same month, the university shared news that Professor Jacob Robinson had published findings on minimally invasive bioelectronics for treating psychiatric conditions. The 9-millimeter device can deliver precise and programmable stimulation to the brain to help treat depression, obsessive-compulsive disorder and post-traumatic stress disorder.

Houston clean hydrogen startup to pilot tech with O&G co.

stay gold

Gold H2, a Houston-based producer of clean hydrogen, is teaming up with a major U.S.-based oil and gas company as the first step in launching a 12-month series of pilot projects.

The tentative agreement with the unnamed oil and gas company kicks off the availability of the startup’s Black 2 Gold microbial technology. The technology underpins the startup’s biotech process for converting crude oil into proprietary Gold Hydrogen.

The cleantech startup plans to sign up several oil and gas companies for the pilot program. Gold H2 says it’s been in discussions with companies in North America, Latin America, India, Eastern Europe and the Middle East.

The pilot program is aimed at demonstrating how Gold H2’s technology can transform old oil wells into hydrogen-generating assets. Gold H2, a spinout of Houston-based biotech company Cemvita, says the technology is capable of producing hydrogen that’s cheaper and cleaner than ever before.

“This business model will reshape the traditional oil and gas industry landscape by further accelerating the clean energy transition and creating new economic opportunities in areas that were previously dismissed as unviable,” Gold H2 says in a news release.

The start of the Black 2 Gold demonstrations follows the recent hiring of oil and gas industry veteran Prabhdeep Singh Sekhon as CEO.

“With the proliferation of AI, growth of data centers, and a national boom in industrial manufacturing underway, affordable … carbon-free energy is more paramount than ever,” says Rayyan Islam, co-founder and general partner at venture capital firm 8090 Industries, an investor in Gold H2. “We’re investing in Gold H2, as we know they’ll play a pivotal role in unleashing a new dawn for energy abundance in partnership with the oil industry.”

------

This article originally ran on EnergyCapital.

3 Houston innovators to know this week

who's who

Editor's note: Every week, I introduce you to a handful of Houston innovators to know recently making headlines with news of innovative technology, investment activity, and more. This week's batch includes an e-commerce startup founder, an industrial biologist, and a cellular scientist.

Omair Tariq, co-founder and CEO of Cart.com

Omair Tariq of Cart.com joins the Houston Innovators Podcast to share his confidence in Houston as the right place to scale his unicorn. Photo via Cart.com

Houston-based Cart.com, which operates a multichannel commerce platform, has secured $105 million in debt refinancing from investment manager BlackRock.

The debt refinancing follows a recent $25 million series C extension round, bringing Cart.com’s series C total to $85 million. The scaleup’s valuation now stands at $1.2 billion, making it one of the few $1 billion-plus “unicorns” in the Houston area.

Cart.com was co-founded by CEO Omair Tariq in October 2020. Read more.

Nádia Skorupa Parachin, vice president of industrial biotechnology at Cemvita

Nádia Skorupa Parachin joined Cemvita as vice president of industrial biotechnology. Photo courtesy of Cemvita

Houston-based biotech company Cemvita recently tapped two executives to help commercialize its sustainable fuel made from carbon waste.

Nádia Skorupa Parachin came aboard as vice president of industrial biotechnology, and Phil Garcia was promoted to vice president of commercialization.

Parachin most recently oversaw several projects at Boston-based biotech company Ginkjo Bioworks. She previously co-founded Brazilian biotech startup Integra Bioprocessos. Read more.

Han Xiao, associate professor of chemistry at Rice University

The funds were awarded to Han Xiao, a chemist at Rice University.

A Rice University chemist has landed a $2 million grant from the National Institute of Health for his work that aims to reprogram the genetic code and explore the role certain cells play in causing diseases like cancer and neurological disorders.

The funds were awarded to Han Xiao, the Norman Hackerman-Welch Young Investigator, associate professor of chemistry, from the NIH's Maximizing Investigators’ Research Award (MIRA) program, which supports medically focused laboratories. Xiao will use the five-year grant to advance his work on noncanonical amino acids.

“This innovative approach could revolutionize how we understand and control cellular functions,” Xiao said in the statement. Read more.