Here's what life science startups were named most promising at the recent Rice Alliance Texas Life Science Forum.. Getty Images

Houston hosted an annual meeting of the minds that included thoughtful discussions, presentations, panels, and startup pitches within the life science industry.

The Texas Life Science Forum, organized and hosted by the Rice Alliance and BioHouston, took place on November 6 at Rice University's Bioscience Research Collaborative. Throughout the day, over 50 life science startups pitched to the audience. At the end of the forum, 10 startups — most of which are based in Houston — were recognized as being the most promising.

Here's what life science startups you should be keeping an eye out for.

Abilitech Medical

abilitech

Photo via abilitechmedical.com

A St. Paul, Minnisota-based medical device company, Abilitech Medical develops assistive technology to Multiple sclerosis, Muscular Dystrophy, Parkinson's and stroke patients. The first product, Alibitech Assist, will be cleared by the FDA in 2020, with other devices to follow in 2022 and 2023.

AgilVax

agilvax

Photo via agilvax.com

Based in Albuquerque, New Mexico, AgilVax is a biopharmaceutical company that works with chemotherapy, checkpoint and KRAS inhibitors to fight various cancers. The company's AX09 is an immunotherapeutic that is headed for human clinical trials in 2020. Another product, M5, is a monoclonal antibody currently in preclinical trials.

Altoida

altoida

Photo via altoida.com

Altoida, based in Houston, has created a medical device that uses artificial intelligence and augmented reality to collect functional and cognitive data in patients to determine their risk Mild Cognitive Impairment from Alzheimer's Disease. The Altoida Neuro Motor Index has been cleared by the FDA and CE and detects cognitive decline with a 94 percent diagnostic accuracy six to 10 years ahead of the onset of symptoms.

ColubrisMX

Photo via Pexels

Houston-based ColubrisMX makes surgical robots specializing in minimally invasive and endoluminal surgeries. The company's team of engineers and surgeons works adjacent to the Texas Medical Center.

Cord Blood Plus

stem cell

Photo via Getty Images

Cord Blood Plus, based in Galveston, is working to commercialize its human umbilical cord blood stem cell technology. The company's primary mission is to use its research and treatment on breast cancer patients undergoing chemotherapy in order to prevent infections, speed up recovery, and shorten hospital stays.

CorInnova

CorInnova

Photo via CorInnova.com

Another Houston company, CorInnova is a medical device company that has developed a cardiac assist device to treat heart failure without many of the consequences from standard treatment. The device is able to self expand and gently compress the heart in sync with the heartbeat.

Mesogen

mesogen

Photo via Mesogen.com

Mesogen, which is based in The Woodlands, is in the business of using a patient's own cells to grow a human kidney for transplant. The tissue engineering technology allows for the creation of a kidney in less than a year with less risk of transplant rejection and a better quality of life over dialysis treatment.

Saranas

Courtesy of Saranas

Houston-based Saranas has created its Early Bird device to more quickly and more accurately detect bleeding in the human body. The company, which underwent successful clinical trials last year, recently received FDA clearance and launched the device in the United States.

Stream Biomedical

stream biomedical

Photo via streambiomedical.com

Stream Biomedical Inc. is tapping into a therapeutic protein that has proven to be neuroprotective and neuroreparative. The Houston company is aiming to apply the treatment in acute stroke cases and later for traumatic brain injury, Alzheimer's, and dementia cases.

VenoStent

Photo via venostent.com

Houston-based VenoStent has created a device that allows a successful stent implementation on the first try. VenoStent's SelfWrap is made from a shape-memory polymer that uses body heat to mold the stent into the vein-artery junction.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

United breaks ground on $177 million facility and opens tech center at IAH

off the ground

United Airlines announced new infrastructure investments at George Bush Intercontinental Airport as part of the company’s ongoing $3.5 billion investment into IAH.

United broke ground on a new $177 million Ground Service Equipment (GSE) Maintenance Facility this week that will open in 2027.

The 140,000-square-foot GSE facility will support over 1,800 ground service vehicles and with expansive repair space, shop space and storage capacity. The GSE facility will also be targeted for LEED Silver certification. United believes this will provide more resources to assist with charging batteries, fabricating metal and monitoring electronic controls with improved infrastructure and modern workspaces.

Additionally, the company opened its new $16 million Technical Operations Training Center.

The center will include specialized areas for United's growing fleet, and advanced simulation technology that includes scenario-based engine maintenance and inspection training. By 2032, the Training Center will accept delivery of new planes. This 91,000-square-foot facility will include sheet metal and composite training shops as well.

The Training Center will also house a $6.3 million Move Team Facility, which is designed to centralize United's Super Tug operations. United’s IAH Move Team manages over 15 Super Tugs across the airfield, which assist with moving hundreds of aircraft to support flight departures, remote parking areas, and Technical Operations Hangars.

The company says it plans to introduce more than 500 new aircraft into its fleet, and increase the total number of available seats per domestic departure by nearly 30%. United also hopes to reduce carbon emissions per seat and create more unionized jobs by 2026.

"With these new facilities, Ground Service Equipment Maintenance Facility and the Technical Operations Training Center, we are enhancing our ability to maintain a world-class fleet while empowering our employees with cutting-edge tools and training,” Phil Griffith, United's Vice President of Airport Operations, said in a news release. “This investment reflects our long-term vision for Houston as a critical hub for United's operations and our commitment to sustainability, efficiency, and growth."

UH study uncovers sustainable farming methods for hemp production

growth plan

A new University of Houston study of hemp microbes can potentially assist scientists in creating special mixtures of microbes to make hemp plants produce more CBD or have better-quality fibers.

The study, led by Abdul Latif Khan, an assistant professor of biotechnology at the Cullen College of Engineering Technology Division, was published in the journal Scientific Reports from the Nature Publishing Group. The team also included Venkatesh Balan, UH associate professor of biotechnology at the Cullen College of Engineering Technology Division; Aruna Weerasooriya, professor of medicinal plants at Prairie View A&M University; and Ram Ray, professor of agronomy at Prairie View A&M University.

The study examined microbiomes living in and around the roots (rhizosphere) and on the leaves (phyllosphere) of four types of hemp plants. The team at UH compared how these microorganisms differ between hemp grown for fiber and hemp grown for CBD production.

“In hemp, the microbiome is important in terms of optimizing the production of CBD and enhancing the quality of fiber,” Khan said in a news release. “This work explains how different genotypes of hemp harbor microbial communities to live inside and contribute to such processes. We showed how different types of hemp plants have their own special groups of tiny living microbes that help the plants grow and stay healthy.”

The study indicates that hemp cultivation can be improved by better understanding these distinct microbial communities, which impact growth, nutrient absorption, stress resilience, synthesis and more. This could help decrease the need for chemical inputs and allow growers to use more sustainable agricultural practices.

“Understanding these microorganisms can also lead to more sustainable farming methods, using nature to boost plant growth instead of relying heavily on chemicals,” Ahmad, the paper’s first author and doctoral student of Khan’s, said the news release.

Other findings in the study included higher fungal diversity in leaves and stems, higher bacterial diversity in roots and soil, and differing microbiome diversity. According to UH, CBD-rich varieties are currently in high demand for pharmaceutical products, and fiber-rich varieties are used in industrial applications like textiles.