While each of this week's three innovators has years of experience under their belts, they are each starting something new. Courtesy photos

3 Houston innovators to know this week

Who's who

Common ingredients among entrepreneurs is a great idea, plenty of hard work, and a whole lot of luck. And, if they are lucky, they've got some experience under their belts too. These three innovators this week are all in the process of starting something — a venture fund, an app, an investment platform — but lucky for them, they know what they're doing.

Allison Lami Sawyer, partner at The League of Worthwhile Ventures

Courtesy of Allison Lami Sawer

Allison Lami Sawyer's story has stuck with me since I first heard it a few weeks ago. Primarily because she's a fantastic storyteller paired with, well, a great story. She's from Alabama and didn't really meet a female entrepreneur until she was one. She started Rebellion Photonics and ran it for several years before recently leaving to start something new: a seed fund called The League of Worthwhile Ventures. Sawyer isn't afraid to start something new and cherishes her role inspiring or advising other women entrepreneurs by being a role model for innovation — something she didn't have as a kid. Read the full story here.

Chris Staffel, COO at Patients We Share

Courtesy of Chris Staffel

While relatively new to the health care business, Chris Staffel has tons of business experience from both coasts. She brings those skills to Patients We Share, an app aiming to enhance and improve doctor referrals. The idea originated from two doctors here in Houston, but as it started to take off, they invested in business professionals like Staffel to make their dream a reality. Read the full story here.

Rashad Kurbanov, CEO and co-founder of iownit.us

Courtesy of iownit.us

I'm bending the rules a little bit here because, unfortunately, Houston cannot claim Rashad Kurbanov. However, the New Yorker is betting on Houston for his new company, iownit.us. The website is a platform for private securities investors and fund-raising companies to connect and make deals — without any red tape. Kurbanov has years of financial experience, but has never done anything like this before because well, no one has. Read the full story here.

Efficient referrals from doctor to doctor could save a life, so this Houston company is setting out to create a network of medical professionals all accessible in an app. Getty Images

Houston-based company is connecting the dots on patient referrals

Diagnosing doctors

When your doctor recommends that you visit another practitioner, it's only natural that you trust the suggestion. But it's one case in which your physician isn't always an expert. Married doctors Justin Bird, an orthopedic surgeon, and Terri-Ann Samuels, a specialist in female pelvic medicine and reconstructive surgery, have long noted that patients are often referred incorrectly.

No big deal, right? Just go to another doctor. But not everyone has that luxury. Bird and Samuels never intended to start their own company. But when Bird lost a patient due to faulty referrals, they knew something had to be done.

"He believes that if she hadn't been bounced around from doctor to doctor, they could have saved her life," says Chris E. Staffel, chief operating officer of Patients We Share, the app that the couple created to fix the broken aspect of the health care system.

In 2015, Bird and Samuels began their company when they were shocked to realize that such an app didn't already exist.

"They started working with physicians around the country who said, 'We really, really need this,' and they also invested in it," recounts Staffel. From those friends, they built a physician advisory board of 15 investors.

Prescribing growth
The project was accepted into Johnson & Johnson's incubator, JLABS in 2016, then TMCx's digital startup program in the spring of 2018.

"They started realizing it was gaining momentum and realized they needed to have business people on board," says Staffel.

They hired Michael Antonoff, a Rice University M.B.A., as CEO. He invited former classmate Staffel to join as COO. Having come from a background in oil and gas, Staffel jumped at the chance to try her hand in a different industry.

With new business clout behind PWS, the company is growing quickly. Currently, PWS is entering its next seed round of $2.5 million that will allow the company to pay salaries of new team members and bring some tech development in-house. Until now, the making of the app itself has been outsourced to Mobisoft Infotech, a company based in Houston and India, which has worked on many projects at the Texas Medical Center. Local Black + Grey Studio is responsible for the design.

PWS has been working with both those teams in recent months to get a prototype app ready for launch. Currently, 100 physicians around the country are part of an invite-only pilot program. Soon, Staffel hopes to allow early adopter doctors who haven't been invited to enroll in the program for free. It will likely be in 2020 that patients will start joining the community, too.

How it works
An index of all the providers on the app allows doctors to easily find practitioners in a particular specialty. But there's more to it. Detailed profiles contribute to machine learning that assures the optimal match every time. Patient reviews will also play a role.

Though referrals were the impetus for the creation of PWS, it may be even more important as a communication tool between doctors, fellow clinicians (anyone from nurse practitioners to physical therapists may be invited to join), and patients. Staffel says participants in the pilot program are already using the messaging system to compare notes on cases, even sending photos from surgery to consult on patient issues.

The app's encryption means that it's HIPAA-compliant. Patients provide permission to discuss their cases via the app. And they can be confident of the quality of care they'll receive. Likely, the app will remain largely invite-only, and everyone who joins will share their National Provider Identifier licenses to be vetted against the federal database.

Doctors will communicate directly with patients through the app, but will also share resources digitally. Instead of making copy after copy of information about post-surgical care, for instance, the physician need only press a button to share a link.

Eventually, the goal is for PWS to be used not just nationally, but internationally, not just by individuals, but by whole hospital systems. A world in which doctors can compare notes around globe could be a little safer for us all.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston engineers develop breakthrough device to advance spinal cord treatment

future of health

A team of Rice University engineers has developed an implantable probe over a hundred times smaller than the width of a hair that aims to help develop better treatments for spinal cord disease and injury.

Detailed in a recent study published in Cell Reports, the probe or sensor, known as spinalNET, is used to explore how neurons in the spinal cord process sensation and control movement, according to a statement from Rice. The research was supported by the National Institutes of Health, Rice, the California-based Salk Institute for Biological Studies, and the philanthropic Mary K. Chapman Foundation based in Oklahoma.

The soft and flexible sensor was used to record neuronal activity in freely moving mice with high resolution for multiple days. Historically, tracking this level of activity has been difficult for researchers because the spinal cord and its neurons move so much during normal activity, according to the team.

“We developed a tiny sensor, spinalNET, that records the electrical activity of spinal neurons as the subject performs normal activity without any restraint,” Yu Wu, a research scientist at Rice and lead author of the study said in a statement. “Being able to extract such knowledge is a first but important step to develop cures for millions of people suffering from spinal cord diseases.”

The team says that before now the spinal cord has been considered a "black box." But the device has already helped the team uncover new findings about the body's rhythmic motor patterns, which drive walking, breathing and chewing.

Lan Luan (from left), Yu Wu, and Chong Xie are working on the breakthrough device. Photo by Jeff Fitlow/Rice University

"Some (spinal neurons) are strongly correlated with leg movement, but surprisingly, a lot of neurons have no obvious correlation with movement,” Wu said in the statement. “This indicates that the spinal circuit controlling rhythmic movement is more complicated than we thought.”

The team said they hope to explore these findings further and aim to use the technology for additional medical purposes.

“In addition to scientific insight, we believe that as the technology evolves, it has great potential as a medical device for people with spinal cord neurological disorders and injury,” Lan Luan, an associate professor of electrical and computer engineering at Rice and a corresponding author on the study, added in the statement.

Rice researchers have developed several implantable, minimally invasive devices to address health and mental health issues.

In the spring, the university announced that the United States Department of Defense had awarded a four-year, $7.8 million grant to the Texas Heart Institute and a Rice team led by co-investigator Yaxin Wang to continue to break ground on a novel left ventricular assist device (LVAD) that could be an alternative to current devices that prevent heart transplantation.

That same month, the university shared news that Professor Jacob Robinson had published findings on minimally invasive bioelectronics for treating psychiatric conditions. The 9-millimeter device can deliver precise and programmable stimulation to the brain to help treat depression, obsessive-compulsive disorder and post-traumatic stress disorder.

Houston clean hydrogen startup to pilot tech with O&G co.

stay gold

Gold H2, a Houston-based producer of clean hydrogen, is teaming up with a major U.S.-based oil and gas company as the first step in launching a 12-month series of pilot projects.

The tentative agreement with the unnamed oil and gas company kicks off the availability of the startup’s Black 2 Gold microbial technology. The technology underpins the startup’s biotech process for converting crude oil into proprietary Gold Hydrogen.

The cleantech startup plans to sign up several oil and gas companies for the pilot program. Gold H2 says it’s been in discussions with companies in North America, Latin America, India, Eastern Europe and the Middle East.

The pilot program is aimed at demonstrating how Gold H2’s technology can transform old oil wells into hydrogen-generating assets. Gold H2, a spinout of Houston-based biotech company Cemvita, says the technology is capable of producing hydrogen that’s cheaper and cleaner than ever before.

“This business model will reshape the traditional oil and gas industry landscape by further accelerating the clean energy transition and creating new economic opportunities in areas that were previously dismissed as unviable,” Gold H2 says in a news release.

The start of the Black 2 Gold demonstrations follows the recent hiring of oil and gas industry veteran Prabhdeep Singh Sekhon as CEO.

“With the proliferation of AI, growth of data centers, and a national boom in industrial manufacturing underway, affordable … carbon-free energy is more paramount than ever,” says Rayyan Islam, co-founder and general partner at venture capital firm 8090 Industries, an investor in Gold H2. “We’re investing in Gold H2, as we know they’ll play a pivotal role in unleashing a new dawn for energy abundance in partnership with the oil industry.”

------

This article originally ran on EnergyCapital.

3 Houston innovators to know this week

who's who

Editor's note: Every week, I introduce you to a handful of Houston innovators to know recently making headlines with news of innovative technology, investment activity, and more. This week's batch includes an e-commerce startup founder, an industrial biologist, and a cellular scientist.

Omair Tariq, co-founder and CEO of Cart.com

Omair Tariq of Cart.com joins the Houston Innovators Podcast to share his confidence in Houston as the right place to scale his unicorn. Photo via Cart.com

Houston-based Cart.com, which operates a multichannel commerce platform, has secured $105 million in debt refinancing from investment manager BlackRock.

The debt refinancing follows a recent $25 million series C extension round, bringing Cart.com’s series C total to $85 million. The scaleup’s valuation now stands at $1.2 billion, making it one of the few $1 billion-plus “unicorns” in the Houston area.

Cart.com was co-founded by CEO Omair Tariq in October 2020. Read more.

Nádia Skorupa Parachin, vice president of industrial biotechnology at Cemvita

Nádia Skorupa Parachin joined Cemvita as vice president of industrial biotechnology. Photo courtesy of Cemvita

Houston-based biotech company Cemvita recently tapped two executives to help commercialize its sustainable fuel made from carbon waste.

Nádia Skorupa Parachin came aboard as vice president of industrial biotechnology, and Phil Garcia was promoted to vice president of commercialization.

Parachin most recently oversaw several projects at Boston-based biotech company Ginkjo Bioworks. She previously co-founded Brazilian biotech startup Integra Bioprocessos. Read more.

Han Xiao, associate professor of chemistry at Rice University

The funds were awarded to Han Xiao, a chemist at Rice University.

A Rice University chemist has landed a $2 million grant from the National Institute of Health for his work that aims to reprogram the genetic code and explore the role certain cells play in causing diseases like cancer and neurological disorders.

The funds were awarded to Han Xiao, the Norman Hackerman-Welch Young Investigator, associate professor of chemistry, from the NIH's Maximizing Investigators’ Research Award (MIRA) program, which supports medically focused laboratories. Xiao will use the five-year grant to advance his work on noncanonical amino acids.

“This innovative approach could revolutionize how we understand and control cellular functions,” Xiao said in the statement. Read more.