Alex Reed, co-founder and CEO of Fluence Analytics, joined InnovationMap for a Q&A on the company's move to Houston and its growth plans. Photo courtesy of Fluence Analytics

Founded in 2012 in New Orleans, a tech company that provides software and hardware solutions for the chemicals industry has entered its next phase of growth by moving its headquarters to Houston following a $7.5 million venture capital raise.

Fluence Analytics, which announced its recent raise led by Yokogawa Electric Corp. last month, has officially moved to the Houston area. The company's new HQ is in Stafford. Alex Reed, co-founder and CEO of the company, joined InnovationMap for a Q&A about what led up to the move and the future of the company, which includes expanding into the life science field.

InnovationMap: Tell me about Fluence Analytics — what does the technology do and why did you decide to start the company?

Alex Reed: We have developed a patented technology that can optimize chemical production. We basically are able to measure what's happening in real time in a process. Imagine if you're baking a cake, and you follow this recipe and sometimes you get the cake you want, sometimes it's too dry, and sometimes it's not cooked enough. And so the polymers industry, for simplistic terms, has that type of an issue. You don't really know exactly where you're at your equipment behaves differently. Basically, what we're able to do is give them real-time information on what's happening as they're baking the cake so that every time they can get a perfect cake.

We have a software and hardware solution that we install in these plants to get these measurements so that our customers can optimize production — and they want to do that to improve their yield, reduce waste, increase safety, and improve quality. There are a lot of different reasons that companies are interested in our technology and we have managed to grow globally. We have customers in Asia, Europe, and the U.S.

We spun out of Tulane University. It's an interesting story because my dad is the inventor of the technology — he's a physics professor at Tulane. I grew up working in the lab with him literally since the age of 12, and I was super interested in technology and science and saw that he was working with all these chemical companies. They were always very interested in what he was working on. I got to the point where I realized that I didn't want to be a scientist — I was far more interested in the commercialization and how you go from lab to product. That transition is very difficult. So, I stepped into the role of the entrepreneur. We had the patents and technology for my dad, I had an excellent mentor, and then our other co-founder was a technical founder.

IM: When and why did you start considering an HQ move? 

AR: We raised our first institutional venture funding in April 2017. Up until that point, it was primarily working with customers and grant funding. We worked with actually a group that has an office here called Energy Innovation Capital. They came in and invested in us and supported us, and George Coyle joined our board.

So, we had that tie to Houston, and I was in Houston a lot because there was a concentration of partners and customers — and not just like chemical plant customers, but also technology and R&D centers. As we started to scale, we brought on some other investors — Mitsubishi Chemical, JSR Corp., and most recently Yokogawa Electric Corp., which has its North American headquarters in Sugar Land.

We started to just build momentum towards it. I'd say we first had the conversations pre-COVID and then COVID hit, and we'd kind of just stopped everything for a while, just to make sure we knew where the business was heading. We've made it through COVID fine and did well on coming out of it. Then we felt it was the right time to pick that thread back up. We knew it made sense. The labor pool is amazing here, and there's just so many reasons why we were looking at it. So then we just pulled the trigger.

IM: How did you decide on the Houston area? What drew you to Stafford?

AR: Initially, we had a little landing pad in the East End Maker Hub, so we got in there and they were awesome. We actually had started hiring remote people here in 2019 because we knew the move was going to happen at some point. We had a place for them to go work out of EEMH while we searched for a permanent facility. We connected with the Greater Houston Partnership, and they plugged us in to Houston Exponential, and they have been very good at introducing us to the right people. We just don't know the lay of the land to be honest, so they've been a great resource. We were looking originally on the northside of Houston, and then we saw the Stafford area. There's a huge concentration of similar type companies — automation, some software, some hardware. There were some tax advantages. We settled in the Stafford area and are very happy with the choice we made to end up here.

IM: I know you recently raised a $7.5M venture funding round. What does that funding mean for growth?

AR: Like any capital, the objective is to use it to grow. For us, "grow" has several different areas. One is the product. There's a very long roadmap of both hardware and software improvements that we want to make. So basically we're accelerating a lot of the things on our roadmap to do things like closed-loop control based on our data — imagine running a whole plant autonomously based on measurements that we're making. We're moving more and more toward that autonomous operation world and improving a lot of the actual underlying hardware, making the measurements, building out sales and marketing as we start to serve more and more customers. Product sales and marketing and customer success are the areas that we're scaling.

IM: As you grow your local team, what are you looking for?

AR: Field applications, software, some automation technicians, and more. We do have some life science applications. So, in addition to our core area on the chemical side, we have a product we've sold into biopharma, and so we want to grow some of that. We're actually hiring for a product manager for the life science side of the business. So, that one's a pretty unique opportunity and role.

IM: Considering your life science application, it seems like Houston is a good fit for that vertical as well, right?

AR: We're working with the Houston of today, but also the Houston of tomorrow, which is this life science play. The next phase is kind of following that innovation value chain. So, figuring out what's the R&D and manufacturing of these pharmaceuticals, and how you can attract more of those technology centers and factories to make the stuff here. If you look at the talent pool here, those resources are somewhat fungible with the resources that serve petrochemical and oil and gas.

This cross pollination I think actually could be quite an interesting differentiator for Houston if the city can build that critical mass. So yes, I think there is an opportunity for us to leverage this vision that Houston has for life science. Now, we'll still have to go to the coast to go to our customers, but I think talent pool, and eventually you might even have customers here. It's certainly feasible.

------

This conversation has been edited for brevity and clarity.

Solugen closed its Series C funding round at $357 million to grow its chemical products. Photo via Getty Images

Houston chemicals company raises $357M, claims unicorn status

money moves

Houston-based Solugen, a startup that specializes in combating carbon dioxide emitted during the production of chemicals, has hauled in $357 million in a Series C funding round. That amount eclipses the size of any Houston VC funding round this year or last year.

The Series C round lifts Solugen's pre-money valuation to $1.5 billion, according to the Axios news website. This gives Solugen "unicorn" status as a startup with a valuation of at least $1 billion.

Singapore-based GIC and Edinburgh, Scotland-based Baillie Gifford led the round, with participation from Temasek Holdings, affiliates of BlackRock, Carbon Direct Capital Management, Refactor Capital, and Fifty Years.

Since its founding in 2016, Solugen has raised more than $405 million in venture capital, according to Crunchbase.

"Solugen's vision for cleaner chemicals through synthetic biology has the potential to be a fundamental shift in how chemicals are made, to help tackle the environmental challenges we face globally. The chemical market itself is colossal, and Solugen is just getting started," Kirsty Gibson, investment manager at Baillie Gifford, says in a September 9 news release.

Solugen's patented Bioforge processes produce "green" chemicals from bio-based feedstocks. These chemicals are aimed at reducing or eliminating carbon emissions from chemical producers. The Series C funding will help Solugen expand the Bioforge platform and broaden the reach of Solugen's products.

Carbon dioxide from chemical production ranks among the greatest contributors to industrial greenhouse gas emissions.

CNBC explains that Solugen designs and grows enzymes that can turn sugar into chemicals needed to make an array products used in many industrial settings. The company's bio-based chemical offering already includes water treatments, a chemical that makes concrete stronger, another chemical that makes fertilizers more efficient, and detergents that are strong enough to clean a locker room or mild enough to be used for facial wipes, according to CNBC.

"This fundraising round allows us to continue expanding the footprint of our Bioforge technology to give industries the products they need to reduce emissions in their existing supply chains, without compromising on performance or economics," Sean Hunt, co-founder and chief technology officer of Solugen, says in the news release.

Three days before the funding announcement, Solugen made news of a different sort.

Axios reported September 7 that Solugen plans to open a new R&D facility outside Texas because many of the state's social policies — including its abortion restrictions — are making it hard to recruit employees.

Solugen employs about 115 people, most of whom work from its Houston headquarters, Axios says. The startup plans to more than double its R&D capability over the next two years, representing around 100 jobs, with most of those workers expected to be assigned to a new facility that will be set up in California or Massachusetts.

"We want to make sure we're hiring the top enzymologists and chemical engineers," Solugen CEO Gaurab Chakrabarti tells Axios. "We've come to the conclusion after talking to lots of candidates that they want to join Solugen, but they don't feel comfortable coming to Texas, so for us it's become a no-brainer to have R&D facilities elsewhere."

Solugen, which uses plant-centered biotechnology to produce environmentally friendly chemicals, has raised an additional $30 million and is speculated to soon reach unicorn status. Photo via solugentech.com

Houston startup raises $30M, plans to be 'next iconic chemical company' with plant-based alternatives

climate tech

While Forbes recently anointed Houston-based Solugen Inc. as one of the next billion-dollar "unicorns" in the startup world, Dr. Gaurab Chakrabarti shrugs off the unicorn buzz.

Chakrabarti, a physician and scientist who's co-founder and CEO of the startup, concedes he doesn't know whether Solugen will be worth $1 billion or not. But he does know that the startup aspires to be a key competitor in the emerging "climate tech" sector, whose players strive to combat climate change. Chakrabarti estimates the climate-tech chemical space alone represents a global market opportunity valued at $1 trillion to $2 trillion per year.

Solugen's overarching goal in the climate-tech market: Replace petroleum-based chemicals with plant-based substitutes.

"I'd love it if we were the poster child that drives climate tech to be the next big, sexy trend," Chakrabarti says.

Chakrabarti acknowledges Solugen's investors, executives, and employees hope the startup succeeds financially. But success, he believes, goes beyond making money and plotting an exit strategy. Instead, Chakrabarti emphasizes "a shift in thinking" on climate tech that he says promises to transform the fledgling sector into a "true niche" that'll be "good for everyone."

"Who cares if people are all hyped up for the wrong reasons?" says Chakrabarti, referring to the unicorn speculation.

Solugen sits at the crossroads of biology and chemistry. In short, the startup taps into plant-centered biotechnology to produce environmentally friendly chemicals and "decarbonize" the chemical industry.

"Quite simply, we want to become the next DowDuPont or the next iconic chemical company, but using principles of green chemistry instead of principles from petroleum chemistry," Chakrabarti says.

If Solugen does reach the icon stratosphere, Chakrabarti envisions it doing so on a speedy schedule. In the traditional petrochemical market, it can take 10 to 20 years to put a new product on the market, he says. "I don't have that kind of time. I'm a very impatient person," Chakrabarti says.

Gaurab Chakrabarti Gaurab Chakrabarti, CEO and co-founder of Solugen, isn't paying any mind to his company's predicted unicorn status — rather he's focusing on the difference he can make on reducing carbon emissions. Photo via solugentech.com

Spurred by that restlessness, Chakrabarti seeks to propel Solugen's products from concept to commercialization in the span of two years. He says the startup already has proven the ability to do that with its sugar-derived hydrogen peroxide product.

"We're going to continue to do that, and it would be great if we can continue demonstrating new [products] coming to market once a year," says Chakrabarti, who grew up in Sugar Land.

Solugen seems to have plenty of financial fuel to make that happen. In April, Solugen raised $30 million in venture capital as an add-on to its Series B funding, which initially closed May 2019. That brings its total VC haul to $68 million since it was founded in 2016, according to Forbes. The recent funding lifted the company's valuation to $250 million, putting it $750 million away from unicorn territory.

Chakrabarti doesn't dismiss the notion of an eventual IPO for Solugen but says being acquired isn't "terribly interesting to me."

"If you want to make money, you can always go be a banker," he notes.

Chakrabarti estimates Solugen will generate $30 million to $40 million in revenue this year, up from $12 million in 2019. Profit remains elusive, though, as the company pours its gains into R&D. The company graduated in 2017 from the Y Combinator startup accelerator. Aside from Y Combinator and Unicorn Venture Partners, investors include Founders Fund, Refactor Capital, Fifty Years, and KdT Ventures.

Solugen's current lineup features fewer than a half-dozen products, which are sold to industrial and government customers. Hundreds more products are in the pipeline for use in sectors like agriculture and energy, Chakrabarti says.

"It's one of the blessings and curses of this company — there's always something to work on, always something big to scale up," says Chakrabarti, who earned his M.D. and Ph.D. from the University of Texas Southwestern Medical Center in Dallas.

Working on selling Solugen's current products and developing its new products are 70 employees, located at its headquarters in Houston and its new production facility in Lubbock. By the end of this year, the startup should employ close to 100 people, Chakrabarti says.

Chakrabarti hesitates to identify Solugen's competitors, as he believes a perceived rival very well could end up becoming a partner.

"I think everyone eventually should be a partner of Solugen, not competition," he says. "It's an ideology that's actually the competition, an ideology like, 'We've always used petrochemistry. This is just how it's been done.'"

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

New Rice Brain Institute partners with TMC to award inaugural grants

brain trust

The recently founded Rice Brain Institute has named the first four projects to receive research awards through the Rice and TMC Neuro Collaboration Seed Grant Program.

The new grant program brings together Rice faculty with clinicians and scientists at The University of Texas Medical Branch, Baylor College of Medicine, UTHealth Houston and The University of Texas MD Anderson Cancer Center. The program will support pilot projects that address neurological disease, mental health and brain injury.

The first round of awards was selected from a competitive pool of 40 proposals, and will support projects that reflect Rice Brain Institute’s research agenda.

“These awards are meant to help teams test bold ideas and build the collaborations needed to sustain long-term research programs in brain health,” Behnaam Aazhang, Rice Brain Institute director and co-director of the Rice Neuroengineering Initiative, said in a news release.

The seed funding has been awarded to the following principal investigators:

  • Kevin McHugh, associate professor of bioengineering and chemistry at Rice, and Peter Kan, professor and chair of neurosurgery at the UTMB. McHugh and Kan are developing an injectable material designed to seal off fragile, abnormal blood vessels that can cause life-threatening bleeding in the brain.
  • Jerzy Szablowski, assistant professor of bioengineering at Rice, and Jochen Meyer, assistant professor of neurology at Baylor. Szablowski and Meyer are leading a nonsurgical, ultrasound approach to deliver gene-based therapies to deep brain regions involved in seizures to control epilepsy without implanted electrodes or invasive procedures.
  • Juliane Sempionatto, assistant professor of electrical and computer engineering at Rice, and Aaron Gusdon, associate professor of neurosurgery at UTHealth Houston. Sempionatto and Gusdon are leading efforts to create a blood test that can identify patients at high risk for delayed brain injury following aneurysm-related hemorrhage, which could lead to earlier intervention and improved outcomes.
  • Christina Tringides, assistant professor of materials science and nanoengineering at Rice, and Sujit Prabhu, professor of neurosurgery at MD Anderson, who are working to reduce the risk of long-term speech and language impairment during brain tumor removal by combining advanced brain recordings, imaging and noninvasive stimulation.

The grants were facilitated by Rice’s Educational and Research Initiatives for Collaborative Health (ENRICH) Office. Rice says that the unique split-funding model of these grants could help structure future collaborations between the university and the TMC.

The Rice Brain Institute launched this fall and aims to use engineering, natural sciences and social sciences to research the brain and reduce the burden of neurodegenerative, neurodevelopmental and mental health disorders. Last month, the university's Shepherd School of Music also launched the Music, Mind and Body Lab, an interdisciplinary hub that brings artists and scientists together to study the "intersection of the arts, neuroscience and the medical humanities." Read more here.

Your data center is either closer than you think or much farther away

houston voices

A new study shows why some facilities cluster in cities for speed and access, while others move to rural regions in search of scale and lower costs. Based on research by Tommy Pan Fang (Rice Business) and Shane Greenstein (Harvard).

Key findings:

  • Third-party colocation centers are physical facilities in close proximity to firms that use them, while cloud providers operate large data centers from a distance and sell access to virtualized computing resources as on‑demand services over the internet.
  • Hospitals and financial firms often require urban third-party centers for low latency and regulatory compliance, while batch processing and many AI workloads can operate more efficiently from lower-cost cloud hubs.
  • For policymakers trying to attract data centers, access to reliable power, water and high-capacity internet matter more than tax incentives.

Recent outages and the surge in AI-driven computing have made data center siting decisions more consequential than ever, especially as energy and water constraints tighten. Communities invest public dollars on the promise of jobs and growth, while firms weigh long-term commitments to land, power and connectivity.

Against that backdrop, a critical question comes into focus: Where do data centers get built — and what actually drives those decisions?

A new study by Tommy Pan Fang (Rice Business) and Shane Greenstein (Harvard Business School) provides the first large-scale statistical analysis of data center location strategies across the United States. It offers policymakers and firms a clearer starting point for understanding how different types of data centers respond to economic and strategic incentives.

Forthcoming in the journal Strategy Science, the study examines two major types of infrastructure: third-party colocation centers that lease server space to multiple firms, and hyperscale cloud centers owned by providers like Amazon, Google and Microsoft.

Two Models, Two Location Strategies

The study draws on pre-pandemic data from 2018 and 2019, a period of relative geographic stability in supply and demand. This window gives researchers a clean baseline before remote work, AI demand and new infrastructure pressures began reshaping internet traffic patterns.

The findings show that data centers follow a bifurcated geography. Third-party centers cluster in dense urban markets, where buyers prioritize proximity to customers despite higher land and operating costs. Cloud providers, by contrast, concentrate massive sites in a small number of lower-density regions, where electricity, land and construction are cheaper and economies of scale are easier to achieve.

Third-party data centers, in other words, follow demand. They locate in urban markets where firms in finance, healthcare and IT value low latency, secure storage, and compliance with regulatory standards.

Using county-level data, the researchers modeled how population density, industry mix and operating costs predict where new centers enter. Every U.S. metro with more than 700,000 residents had at least one third-party provider, while many mid-sized cities had none.

ImageThis pattern challenges common assumptions. Third-party facilities are more distributed across urban America than prevailing narratives suggest.

Customer proximity matters because some sectors cannot absorb delay. In critical operations, even slight pauses can have real consequences. For hospital systems, lag can affect performance and risk exposure. And in high-frequency trading, milliseconds can determine whether value is captured or lost in a transaction.

“For industries where speed is everything, being too far from the physical infrastructure can meaningfully affect performance and risk,” Pan Fang says. “Proximity isn’t optional for sectors that can’t absorb delay.”

The Economics of Distance

For cloud providers, the picture looks very different. Their decisions follow a logic shaped primarily by cost and scale. Because cloud services can be delivered from afar, firms tend to build enormous sites in low-density regions where power is cheap and land is abundant.

These facilities can draw hundreds of megawatts of electricity and operate with far fewer employees than urban centers. “The cloud can serve almost anywhere,” Pan Fang says, “so location is a question of cost before geography.”

The study finds that cloud infrastructure clusters around network backbones and energy economics, not talent pools. Well-known hubs like Ashburn, Virginia — often called “Data Center Alley” — reflect this logic, having benefited from early network infrastructure that made them natural convergence points for digital traffic.

Local governments often try to lure data centers with tax incentives, betting they will create high-tech jobs. But the study suggests other factors matter more to cloud providers, including construction costs, network connectivity and access to reliable, affordable electricity.

When cloud centers need a local presence, distance can sometimes become a constraint. Providers often address this by working alongside third-party operators. “Third-party centers can complement cloud firms when they need a foothold closer to customers,” Pan Fang says.

That hybrid pattern — massive regional hubs complementing strategic colocation — may define the next phase of data center growth.

Looking ahead, shifts in remote work, climate resilience, energy prices and AI-driven computing may reshape where new facilities go. Some workloads may move closer to users, while others may consolidate into large rural hubs. Emerging data-sovereignty rules could also redirect investment beyond the United States.

“The cloud feels weightless,” Pan Fang says, “but it rests on real choices about land, power and proximity.”

---

This article originally appeared on Rice Business Wisdom. Written by Scott Pett.

Pan Fang and Greenstein (2025). “Where the Cloud Rests: The Economic Geography of Data Centers,” forthcoming in Strategy Science.

Houston climbs to top 10 spot on North American tech hubs index

tech report

Houston already is the Energy Capital of the World, and now it’s gaining ground as a tech hub.

On Site Selection magazine’s 2026 North American Tech Hub Index, Houston jumped to No. 10 from No. 16 last year. The index relies on data from Site Selection as well as data from CBRE, CompTIA and TeleGeography to rank the continent’s tech hotspots. The index incorporates factors such as internet connectivity, tech talent and facility projects for tech companies.

In 2023, the Greater Houston Partnership noted the region had “begun to receive its due as a prominent emerging tech hub, joining the likes of San Francisco and Austin as a major player in the sector, and as a center of activity for the next generation of innovators and entrepreneurs.”

The Houston-area tech sector employs more than 230,000 people, according to the partnership, and generates an economic impact of $21.2 billion.

Elsewhere in Texas, two other metros fared well on the Site Selection index:

  • Dallas-Fort Worth nabbed the No. 1 spot, up from No. 2 last year.
  • Austin rose from No. 8 last year to No. 7 this year.

San Antonio slid from No. 18 in 2025 to No. 22 in 2026, however.

Two economic development officials in DFW chimed in about the region’s No. 1 ranking on the index:

  • “This ranking affirms what we’ve long seen on the ground — Dallas-Fort Worth is a top-tier technology and innovation center,” said Duane Dankesreiter, senior vice president of research and innovation at the Dallas Regional Chamber. “Our region’s scale, talent base, and diverse strengths … continue to set DFW apart as a national leader.”
  • “Being recognized as the top North American tech hub underscores the strength of the entire Dallas-Fort Worth region as a center of innovation and next-generation technology,” said Robert Allen, president and CEO of the Fort Worth Economic Development Partnership.

While not directly addressing Austin’s Site Selection ranking, Thom Singer, CEO of the Austin Technology Council, recently pondered whether Silicon Hills will grow “into the kind of community that other cities study for the right reasons.”

“Austin tech is not a club. It is not a scene. It is not a hashtag, a happy hour, or any one place or person,” Singer wrote on the council’s blog. “Austin tech is an economic engine and a global brand, built by thousands of people who decided to take a risk, build something, hire others, and be part of a community that is still young enough to reinvent itself.”

South of Austin, Port San Antonio is driving much of that region’s tech activity. Occupied by more than 80 employers, the 1,900-acre tech and innovation campus was home to 18,400 workers in 2024 and created a local economic impact of $7.9 billion, according to a study by Zenith Economics.

“Port San Antonio is a prime example of how innovation and infrastructure come together to strengthen [Texas’] economy, support thousands of good jobs, and keep Texas competitive on the global stage,” said Kelly Hancock, the acting state comptroller.