New facility will accelerate investigational treatments in cancer, heart disease, neurological disorders and more. Photo courtesy of Houston Methodist

Houston Methodist recently opened a new 5,000-square-foot lab that will focus on developing and producing lifesaving treatments through cell therapy, the hospital announced last week.

Named the Ann Kimball & John W. Johnson Center for Cellular Therapeutics after long-time supporters of the hospital, the lab is located in the Houston Methodist Outpatient Center in the Texas Medical Center. The space includes 1710 square feet of cleanroom space, a dedicated quality control laboratory, six production rooms, support spaces and more to help develop new cell therapies and investigational therapeutics.

The combination of the control laboratory and production rooms onsite are anticipated to help the hospital treat patients safely and more efficiently, according to the statement.

Work at the JCCT is slated to benefit medical research throughout Houston Methodist in the fields of cancer, cardiovascular, neurology, organ transplantation, orthopedics and gastroenterology treatment.

The new center is named for Ann Kimball and John W. Johnson, who contributed a gift that will go toward establishing the facility. Photo courtesy of Houston Methodist

According to a statement from the hospital, cell therapy is "one of the most promising treatment options available," with applications in treatment for cancer, heart disease, and neurological diseases like ALS, Alzheimer’s and Parkinson’s. The therapy requires that a patient is implanted with live cells provided by a donor or the patient themselves. These cells can help repair or rejuvenate damaged tissue or cells.

“Many diseases have limited or ineffective therapies, so there is a tremendous need and opportunity to bring transformative and restorative new treatments to patients through cell therapy,” distinguished neurologist Dr Stanley Appel, who will lead the center, said the statement. “Having a cellular therapy laboratory on-site at Houston Methodist has always been a part of our vision. The Johnson family’s generosity and support of this vision will give hope to countless patients battling neurodegenerative diseases and more.”

The Johnsons' gift also created a matching fund that supports cell therapy projects in all specialties at Houston Methodist. At press time, the fund had helped attract 51 donors, including 69-year-old Jack McClanahan, who suffers from ALS and was the first to donate to the center.

"I volunteered for this because I want a younger man or woman with children to have a chance – this is a devastating disease,” McClanahan said in the statement. “If there’s any hope to help others, I just want to be part of it.”

Houston Methodist also announced last month that it will break ground on a $650 million Cypress "smart" hospital this spring. The hospital is slated to incorporate artificial intelligence, big data, and Alexa- and Siri-like voice technology into its treatment plans and design.

iBiochips was awarded a $1.5 million grant in September to help develop a new technology that delivers data about the cell's genetic makeup and reports abnormalities. Getty Images

Houston-based biotech company aims to revolutionize cellular dissection technology

digital disease detective

Innovative Biochips, a Houston-based biotechnology company, is one step closer to commercializing technology that the company hopes will provide an opportunity for researchers to detect diseases earlier.

The company was founded three years ago by Dr. Lidong Qin, a professor at the Houston Methodist Research Institute's department of nanomedicine. He launched iBiochips as an independent faculty startup that licensed technology from Houston Methodist. Qin says he wanted to engineer and manufacture devices that focus on revolutionizing single-cell isolation and genetic analysis.

Qin says it can be difficult to launch a biotech startup in Houston, since the industry requires hefty initial funds to open a facility, get patents and hire a team of researchers.

"In the Houston area, even though it looks like it's a lot of state money (grants) around, it's very limited, and that's been a challenge of ours," Qin says.

But with the help of a $1.5 million investment from a private investor, Qin was able to launch iBiochips in 2015, and shortly after opened his own lab on Kirby Drive.

Recently, iBiochips was awarded a $1.5 million grant in September from the National Institutes of Health's Small Business Technology Transfer program. The grant will further support the company's research and development of an automated yeast dissection chip, which is designed to perform a raw analysis of single cells and deliver data about the cell's genetic makeup and report abnormalities.

Prior to the phase two grant, iBiochips was also awarded NIH's phase one grant of $225,000 in September 2017 to develop a prototype for the company's flagship cell isolation product, the Smart Aliquotor.

The Smart Aliquotor is a single-cell isolation dissection platform that allows scientists to analyze larger amounts of cells at a much faster rate than traditional isolation methods, Qin says. He says the system is also more convenient for researchers to operate because traditional cell isolation techniques require a lot of human effort.

To isolate the cells with a Smart Aliquotor, a scientist would take a patient's blood sample and inject it into a single point in the device. The blood sample would then travel through microfluidic channels into the device's 60 to 100 isolated holes, Qin says.

"In three days, we can handle about one million cells," Qin says. "In a traditional approach, people can handle only one or two cells in three days. So that is how we came to the [idea of the] chip can help a scientist do 20 years of work in three days."

The Smart Aliquotor can then be examined with iBiochips' newly funded automated dissection chip, which Qin says has the potential to detect cancer or infectious diseases earlier than before.

"If you isolate a cell by itself — even in the very beginning stage when the aggressive cells are not as dominating yet — you can still see that [abnormality in the sample]," Qin says.

iBiochips' products are currently only being manufactured for research use at clinical labs, universities and pharmacies. However, with the recent grant award, Qin says the company's research team plans to spend the next three to five years preparing the products for worldwide commercialization.


Dr. Lidong Qin is a professor at the Houston Methodist Research Institute's department of nanomedicine. He launched iBiochips as an independent faculty startup that licensed technology from Houston Methodist.Courtesy of Lidong Qin

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston VC funding surged in Q1 2025 to highest level in years, report says

by the numbers

First-quarter funding for Houston-area startups just hit its highest level since 2022, according to the latest PitchBook-NVCA Venture Monitor. But fundraising in subsequent quarters might not be as robust thanks to ongoing economic turmoil, the report warns.

In the first quarter of 2025, Houston-area startups raised $544.2 million in venture capital from investors, PitchBook-NVCA data shows. That compares with $263.5 million in Q1 2024 and $344.5 million in Q1 2023. For the first quarter of 2022, local startups nabbed $745.5 million in venture capital.

The Houston-area total for first-quarter VC funding this year fell well short of the sum for the Austin area (more than $3.3 billion) and Dallas-Fort Worth ($696.8 million), according to PitchBook-NVCA data.

While first-quarter 2025 funding for Houston-area startups got a boost, the number of VC deals declined versus the first quarters of 2024, 2023 and 2022. The PitchBook-NVCA Monitor reported 37 local VC deals in this year’s first quarter, compared with 45 during the same period in 2024, 53 in 2023, and 57 in 2022.

The PitchBook-NVCA report indicates fundraising figures for the Houston area, the Austin area, Dallas-Fort Worth and other markets might shrink in upcoming quarters.

“Should the latest iteration of tariffs stand, we expect significant pressure on fundraising and dealmaking in the near term as investors sit on the sidelines and wait for signs of market stabilization,” the report says.

Due to new trade tariffs and policy shifts, the chances of an upcoming rebound in the VC market have likely faded, says Nizar Tarhuni, executive vice president of research and market intelligence at PitchBook.

“These impacts amplify economic uncertainty and could further disrupt the private markets by complicating investment decisions, supply chains, exit windows, and portfolio strategies,” Tarhuni says. “While this may eventually lead to new domestic investment and create opportunities, the overall environment is facing volatility, hesitation, and structural change.”

Expert: Texas is building a cybersecurity wall — but it needs more bricklayers

Guest Column

Texas has always been a state that thinks in terms of scale. Big energy, big ambitions and now, big action in cybersecurity.

With the creation of the Texas Cyber Command under the Department of Information Resources, the state is recognizing what many of us in the industry have long understood: cybersecurity is not just an IT issue, it's a matter of public safety and economic resilience. Protecting municipal systems, schools, and critical energy infrastructure from cyber threats is no longer optional. It is essential.

For these efforts to succeed, Texas must invest as much in people as it does in technology. Without a capable, well-trained workforce to carry out the mission, even the strongest cyber strategies will struggle to hold the line.

The scope of the threat

Cyberattacks are not theoretical. In the last year alone, several cities in Texas experienced major ransomware attacks. One incident in Fort Worth took down core city systems, affecting everything from email access to permitting operations. The ripple effects were significant.

The energy sector is also under constant pressure. As a cornerstone of both the Texas and national economy, the it is a high-value target. Hackers are probing systems that manage oil, gas, and renewable energy infrastructure, looking for weaknesses that could be exploited to steal data or disrupt operations.

Texas has responded by centralizing its cyber incident response capabilities. The Texas Cyber Command is a smart step forward. It brings coordination and focus to an increasingly complex landscape. But its effectiveness will depend entirely on the professionals tasked with doing the work. And that’s where the challenge lies.

The workforce gap

Across the U.S., there are an estimated 400,000 unfilled cybersecurity positions. In Texas, more than 40,000 roles remain vacant, according to CyberSeek. These are not just numbers in a report. They represent a growing vulnerability with gaps in frontline defenses against real and persistent threats.

We cannot afford to rely solely on traditional pathways to fill this gap. Four-year degree programs are important, but they are not designed to scale fast enough or flexibly enough to meet today’s needs. Instead, we need to broaden our view of what a cybersecurity talent pipeline looks like and who it includes.

There needs to be an expanded focus on practical, skills-based training that takes high-aptitude individuals, including those from non-traditional backgrounds, and prepares them for success in cybersecurity careers through rigorous hands-on training that reflects the demands of real-world cyber roles. With the right structure and support, people from all walks of life are already proving they can become capable defenders of our digital infrastructure.

The same entrepreneurial spirit that drives innovation in other sectors can be applied to cybersecurity workforce development. We don’t have to wait years to grow the next generation of defenders. We can do it now, with the right focus and investment.

Texas has taken a critical first step by creating the Cyber Command, but if we want to build lasting resilience, we need to address the workforce bottleneck head-on. Cybersecurity needs more than tech…it needs talent.

---

Dean Gefen is theCEO, NukuDo, a San Antonio-based cybersecurity workforce development and staffing company.

Rice Business Plan Competition doles out $2M to 2025 student teams

big winners

Celebrating its 25th year, the Rice Alliance for Technology and Entrepreneurship hosted the celebrated Rice Business Plan Competition this month, doling out more than $2 million in investment and cash prizes to the top-performing teams.

“For 25 years, the Rice Business Plan Competition has helped shape how Rice Business shows up in the world by creating a platform where student-entrepreneurs can tackle some of the most complex challenges of our time in energy, in health care, in technology and beyond,” Peter Rodriguez, dean of Rice Business, the presenting sponsor of the event, said in a news release. “If we’re serious about changing the world — and I believe we are — then it’s our responsibility to open doors for students everywhere to imagine bold solutions and build what comes next.”

Over the course of the three-day event, the 42 startups competing this year from colleges or universities around the world presented their plans before more than 300 angel, venture capital, and corporate investors. The teams were selected from the event’s largest applicant pool to date and represented 34 universities across four countries, according to Rice. Winners were announced at the company showcase and awards ceremony April 12 in downtown Houston.

Seven finalists were selected, though each team left the competition with some form of funding, according to Rice. The University of Michigan's Intero Biosystems was the star of the show, bringing home both the top-place finish and the largest total investment. Rice's own Pattern Materials also had a strong showing, placing fourth in the pitch competition and also earning the fourth-highest investment total.

Here are the teams that won big in 2025. See a full list of winners and prizes here.

Intero Biosystems, University of Michigan - $902,000

The team finished in first place for its GastroScreen, the first stem cell-driven human “mini gut” that is ideal for organ function testing before testing on humans, and also claimed the largest total investments among the competition.

  • $150,000 Goose Capital Investment Grand Prize
  • $250,000 Goose Capital Investment Prize
  • $200,000 The OWL Investment Prize
  • $100,000 Houston Angel Network Investment Prize
  • $100,000 nCourage Investment Network’s Courageous Women Entrepreneur Investment Prize
  • $100,000 Investment Prize from Nancy Chang
  • $1,000 Mercury Elevator Pitch Competition - Overall Winner
  • $1,000 Anbarci Family Company Showcase Prize
  • TMC Innovation Healthcare Accelerator Bootcamp Invitation Prize

MabLab, Harvard University – $301,500

The team placed second for its rapid test capable of detecting multiple adulterants in laced drugs and spiked drinks.

  • $100,000 Investment Prize, sponsored by David Anderson, Anderson Family Fund, Jon Finger and Finger Interests
  • $100,000 The Indus Entrepreneurs (TiE) Texas Angels Investment Prize
  • $25,000 nCourage Investment Network’s Courageous Women Entrepreneur Investment Prize
  • $50,000 Valhalla Investment Network Investment Prize
  • $25,000 The Eagles Investor Investment Prize
  • $500 Mercury Elevator Pitch Competition - Life Science*
  • $1,000 Anbarci Family Company Showcase Prize

re.solution, RWTH Aachen University — $76,500

The team placed third for its water-based technology that recycles polyesters without generating salt waste, making textile recycling viable.

  • $50,000 Investment Prize, sponsored by David Anderson, Anderson Family Fund, Jon Finger and Finger Interests
  • $25,000 Pearland EDC Spirit of Entrepreneurship Cash Prize
  • $500 Mercury Elevator Pitch Competition - Energy/Cleantech
  • $1,000 Anbarci Family Company Showcase Prize

Pattern Materials, Rice University – $134,500

The Houston-based team placed fourth for its laser-induced graphene technology that can be rapidly performed, enabling low-cost, scalable production of the material.

  • $5,000 prize, sponsored by Norton Rose Fulbright
  • $50,000 Valhalla Investment Network Investment Prize
  • $25,000 Pearland EDC Spirit of Entrepreneurship Cash Prize
  • $25,000 New Climate Ventures Sustainable Investment Prize
  • $25,000 Amentum and WRX Companies Rising Stars Space Technology and Commercial Aerospace Cash Prize
  • $500 Mercury Elevator Pitch Competition - Hard Tech
  • $1,000 Anbarci Family Company Showcase Prize
  • $3,000 Venture Builder Innovation Prizes

Xatoms, Western University and University of Toronto — $30,000

The team placed fifth for its AI- and quantum-driven platform for discovering solar-activated semiconductor materials.

  • $5,000 prize, sponsored by EY
  • $25,000 nCourage Investment Network’s Courageous Women Entrepreneur Investment Prize

Mito Robotics, Carnegie Mellon University— $5,000

The team placed sixth for its automated manual cell culture with AI-powered robotic scientists for life science research

  • $5,000 prize, sponsored by Chevron Technology Ventures

FarmSmart.ai, LSU – $106,000

The team placed seventh for its AI—driven assistant that synthesizes vast agricultural research into actionable, tailored intelligence, but earned the fifth-most investments among the group.

  • $5,000 prize, sponsored by Shell Ventures
  • $100,000 The OWL Investment Prize
  • $1,000 Anbarci Family Company Showcase Prize
  • Edward H. Molter Memorial Prizes for Wildcard Round - 1st place - Advance to Finals


Other significant awards

GreenLIB Materials, University of Ottawa – $152,000

  • $150,000 Goose Capital Investment Prize
  • $2,000 Venture Builder Innovation Prizes

Microvitality, Tufts University – $26,500

  • $25,000 Southwest National Pediatric Device Consortium Pediatric Device Cash Prize
  • $1,500 Edward H. Molter Memorial Prizes for Wildcard Round - 3rd place overall in WC

Nanoborne, University of Texas at Austin - $25,000

  • $25,000 NOV Golden Ticket to Supernova Accelerator and Cash Prize

Last year, the Rice Business Plan Competition facilitated over $1.5 million in investment and cash prizes. MesaQuantum from Harvard University landed the highest total investment last year, although it was not named a finalist. Protein Pints from Michigan State University won the pitch competition.

According to Rice, 910 startups have raised more than $6.9 billion in capital through the competition over the last 25 years.