Lignium combats greenhouse gasses with a green fuel that boasts an enviably low carbon footprint. Photo courtesy of Lignium

In Houston, air pollution is usually more of an abstract concept than a harsh reality. But in parts of Chile, the consequences of heating homes with wet wood are catching up to residents.

“Given all the contamination, there are times kids aren’t allowed to go to school. The air pollution is really affecting people’s health,” says Agustín Ríos, COO of Lignium Energy.

Additionally, the methane and nitrous oxide produced by cattle farming are a problem. But Lignium Energy, an international company started in Chile and now headquartered in Houston’s Greentown Labs, has a solution that can solve both problems by upending the latter.

“There’s a lack of solutions with the problem of manure. Methane gases are destroying our planet,” says CEO and co-founder Enrique Guzmán. He goes on to say that most solutions currently being developed are expensive and complex. But not Lignium Energy’s method, invented by co-founder José Antonio Caraball.

Caraball has patented an extraordinarily simple concept. Lignium separates the solid from liquid excretions, then cleans the solid to generate a hay-like biomass. Biomass refers to organic matter that can be used as fuel. What Lignium makes from the cattle evacuations is a clean, odorless and highly calorific biomass.

Essentially, Lignium combats greenhouse gasses with a green fuel that boasts an enviably low carbon footprint. “Our process is very cheap and very simple. That’s why we are a great solution,” explains Guzmán.

Caraball, an industrial engineer, came up with the idea six years ago, says Guzmán. Five years ago, he began working with the company, one year ago, Guzmán and Ríos picked up and moved to Houston.

“We decided to move out of Chile due to market size,” says Ríos. However, the product is already being sold to consumers in its homeland.

Why Houston? The reason was twofold. As an energy company, Ríos says that they wanted to be in “the energy capital of the world.” But Texas is also one of the largest sites of cattle farming on the planet. Lignium prefers to work with farms with more than 500 head to optimize harvesting the waste that becomes biomass.

With that in mind, Lignium has partnered with Southwest Regional Dairy Center in Stephenville, Texas, a little more than an hour southwest of Fort Worth, a town known as the world’s rodeo capital. The facility is associated with Texas A&M, though Guzmán says Lignium is not officially associated with the university.

Guzmán says that the company is currently hiring a team member to help Lignium figure out commercial logistics, as well as four or five other Houstonians who will help them take their product to market in the United States, and eventually around the globe. For now, he predicts that they will be able to sell to consumers in this country by early next year, if not the fourth quarter of 2023.

“We are very committed to the solution because, at the end of the day, if we do good work with the company, we are sure we can give better conditions to the cattle industry,” says Guzmán. “Then we can make a big impact on a real problem.

Syzygy Plasmonics has released a free online tool that enables users to calculate the greenhouse gas emissions and emission-reduction costs in as little as 60 seconds. Photo via Getty Images

Houston energy tech company launches B2B carbon footprint calculator

seeing green

Houston-area energy tech startup Syzygy Plasmonics is helping businesses and other organizations get a handle on greenhouse gas emissions.

Syzygy just released a free online tool at CarbonModel.com that enables users to calculate the greenhouse gas emissions and emission-reduction costs in as little as 60 seconds. It’s a more straightforward way of making those calculations than is offered by Argonne National Laboratory’s Greenhouse gases, Regulated Emissions, and Energy use in Technologies (GREET) model, the startup says.

Syzygy says it created the tool in light of heightened interest surrounding clean hydrogen. The recently passed federal Inflation Reduction Act includes tax credits for clean hydrogen projects.

“New and existing hydrogen producers, consumers, and project developers are actively seeking to identify and quantify the impacts that the tax credits will have on project economics and feasibility,” Syzygy says in a news release.

Syzygy co-founder and CEO Trevor Best calls the Inflation Reduction Act “a major tailwind” for energy transition and hydrogen adoption.

“Existing hydrogen producers now have the fiscal support needed to sanction new projects. And companies that had been mulling hydrogen as a new business are incentivized to move more quickly,” Best says. “Both existing and new entrants in the hydrogen market want to know if their hydrogen is clean enough to qualify for [Inflation Reduction Act] tax credits.”

Murtuza Marfani, vice president of finance and corporate development at Syzygy, says tools like GREET are “demanding and complex” when it comes to figuring out tax credits for clean hydrogen projects.

“CarbonModel.com simplifies early-stage analysis,” Marfani says. “We see it contributing to the momentum from the [Inflation Reduction Act] by enabling organizations to quickly assess project viability. It will also help them address any gaps in knowledge before committing to full-project modeling.”

CarbonModel.com currently focuses on hydrogen production, but Syzygy says future versions will provide cost and carbon footprint assessments for ammonia, e-fuels, and other chemicals.

Syzygy has developed reactor technology that uses light from ultra-high-efficiency LEDs to power chemical reactions, eliminating the traditional method of producing hydrogen with heat from burning fuel.

In May, Syzygy said it was relocating its headquarters from 9000 Kirby Dr. in Houston to Pearland. It’s leasing a 44,800-square-foot building in Pearland for its headquarters, R&D operations, and manufacturing facilities. The new facility is at 3250 S. Sam Houston Pkwy.

Founded in 2017, Syzygy has created technology that generates clean hydrogen from various feedstocks. Syzygy’s technology is based on an area of science known as photocatalysis, which uses light from LEDs driven by renewable electricity to conduct chemical reactions. The technology can electrify the production of chemicals such as hydrogen, liquid fuels, and fertilizer.

In 2021, the company — whose technology is based on Rice University research — raised $23 million in series B funding. Syzygy has collected a total of $30 million, according to Crunchbase.

Houston claimed the No. 1 spot among the 50 most visited in the U.S. with the lowest carbon footprint. Sean Pavone/Getty Images

Houston steps to top of list of U.S. cities with lowest carbon footprints

seeing green

People looking to travel to a sustainable city probably don’t have Texas spots at the top of their lists. Images of oil, cars, and blasting air conditioners spring up. The Texas power grid, no one need remind us, is barely hanging on.

But Texas blew other states away for lowest carbon footprint per capita, landing Houston at the top of the list compiled by travel blog Park Sleep Fly. Austin followed (No. 3), then San Antonio (No. 4) and Dallas (No. 9). Only Florida appeared twice in the top 10, and none matched Texas with four cities.

Among the 50 most visited in the U.S., those with the lowest carbon footprint are:

1. Houston
2. Los Angeles
3. Austin
4. San Antonio
5. Tampa, Florida
6. Salt Lake City
7. Phoenix
8. Miami
9. Dallas
10. Portland, Oregon

Houston is not exactly a green place, with less-than-ideal utilization of public transportation. It and Dallas tied for third place among least sustainable cities in the same report.

“Public transit isn’t the most popular mode of transportation in Houston, but it does exist,” an online publication called TripSavvy drably admits. The city takes credit for employing “nearly one third” of the nation’s oil and gas extraction workers.

On the renewable side, however, Houston claims more than 100 solar energy companies, and at least half of its corporate research and development centers pursue “energy technology and innovation.” And its huge population spreads the load, leaving only 14.6 metric tons of carbon dioxide per resident — the same as Los Angeles. Big cities seem to have an advantage in this rating system.

Austin is just behind Houston at 15 metric tons per capita, neck-and-neck with San Antonio at 15.2. These two cities have smaller populations to distribute their total footprint, but are generally seen as eco-friendly. Austin got a big head start in 1991 with the introduction of the Austin Energy Green Building program — the first of its kind in the whole country — which created an evaluation system for individual building sustainability that’s still in use. Dallas' carbon footprint is the largest of the Texas cities in the ranking, at 16.5 metric tons per capita.

As such a multifaceted issue (especially tied up in economic concerns), sustainability is hard to pin down from city to city. The multiplicity of this list is yet another indicator that Texas as a whole is a much more nuanced place than many people think.

------

This article originally ran on CultureMap.

Here's some advice for going green in the lab. Graphic byMiguel Tovar/University of Houston

Houston expert shares tips for shrinking your lab's carbon footprint

houston voices

Trying to make your lab greener? Here are some practical examples of how to reduce your lab's carbon footprint and increase sustainability. Since China stopped accepting certain types of plastic waste from the United States and Europe in 2017, the need to dispose of hundreds of single-use plastic vials and other materials (per researcher, each year!) has created an avalanche of waste.

The "single use" problem

COVID-19 has led to even more single-use plastics in labs – and in our everyday lives. The sheer number of gloves, testing kits and even masks we throw away is incredible. "The majority of masks are manufactured from long-lasting plastic materials, and if discarded can persist in the environment for decades to hundreds of years," wrote authors from the University of Portsmouth at the Conversation.com.

Reduce, reuse, recycle

Labs are full of other single-use plastics such as pipette tips, weighing boats, tubes, flasks, reagent bottles, cuvettes, and more. 'Reduce, reuse and recycle' is a fine mantra, but how do researchers cut down on plastics when the sterility of equipment is a concern?

According to the UK's Chemical and Engineering News magazine, "Different users have optimized washing protocols to get pipette tips clean enough for different lab techniques, including mass spectrometry or toxicology and immunology assays.

Earlier this year, for example, researchers at the National Institutes of Health's National Center for Advancing Translational Sciences found their washed pipettes gave the same results as new tips for preparing small-interfering-RNA screening libraries." Customers of Grenova, a lab equipment firm, have reported that some tips can reused 25-40 times.

Baby it's cold

In Nature, Jyoti Madhusoodanan wrote: "Scientists are increasingly aware of the disproportionate environmental footprint of their research. Academic research facilities consume three to six times as much energy as commercial buildings, much of that due to refrigeration and ventilation systems." The has led some third-party "green companies" employed by labs to hold entire conferences around ultra-low temperature freezers. In a feature advertisement in Nature Portfolio, a statistic read: "An average Ultra-Low Temperature freezer consumes as much energy as a single-family home (~20 kWh/day)."

Help for scientists

There are non-profits that will help you mitigate the amount of waste produced by your lab. One of these, My Green Lab, said on its website: "Run 'for scientists, by scientists,' we leverage our credibility and track record to develop standards, oversee their implementation, and inspire the many behavioral changes that are needed throughout the scientific community."

And it offers a free training course for "ambassadors" – those who would like to guide their lab toward sustainable practices.

------

This article originally appeared on the University of Houston's The Big Idea. Sarah Hill, the author of this piece, is the communications manager for the UH Division of Research.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

New Houston venture studio emerges to target early-stage hardtech, energy transition startups

funding the future

The way Doug Lee looks at it, there are two areas within the energy transition attracting capital. With his new venture studio, he hopes to target an often overlooked area that's critical for driving forward net-zero goals.

Lee describes investment activity taking place in the digital and software world — early stage technology that's looking to make the industry smarter. But, on the other end of the spectrum, investment activity can be found on massive infrastructure projects.

While both areas need funding, Lee has started his new venture studio, Flathead Forge, to target early-stage hardtech technologies.

“We are really getting at the early stage companies that are trying to develop technologies at the intersection of legacy industries that we believe can become more sustainable and the energy transition — where we are going. It’s not an ‘if’ or ‘or’ — we believe these things intersect,” he tells EnergyCapital.

Specifically, Lee's expertise is within the water and industrial gas space. For around 15 years, he's made investments in this area, which he describes as crucial to the energy transition.

“Almost every energy transition technology that you can point to has some critical dependency on water or gas,” he says. “We believe that if we don’t solve for those things, the other projects won’t survive.”

Lee, and his brother, Dave, are evolving their family office to adopt a venture studio model. They also sold off Azoto Energy, a Canadian oilfield nitrogen cryogenic services business, in December.

“We ourselves are going through a transition like our energy is going through a transition,” he says. “We are transitioning into a single family office into a venture studio. By doing so, we want to focus all of our access and resources into this focus.”

At this point, Flathead Forge has seven portfolio companies and around 15 corporations they are working with to identify their needs and potential opportunities. Lee says he's gearing up to secure a $100 million fund.

Flathead also has 40 advisers and mentors, which Lee calls sherpas — a nod to the Flathead Valley region in Montana, which inspired the firm's name.

“We’re going to help you carry up, we’re going to tie ourselves to the same rope as you, and if you fall off the mountain, we’re falling off with you,” Lee says of his hands-on approach, which he says sets Flathead apart from other studios.

Another thing that's differentiating Flathead Forge from its competition — it's dedication to giving back.

“We’ve set aside a quarter of our carried interest for scholarships and grants,” Lee says.

The funds will go to scholarships for future engineers interested in the energy transition, as well as grants for researchers studying high-potential technologies.

“We’re putting our own money where our mouth is,” Lee says of his thesis for Flathead Forge.

------

This article originally ran on EnergyCapital.

Houston-based lunar mission's rocky landing and what it means for America's return to the moon

houston, we have a problem

A private U.S. lunar lander tipped over at touchdown and ended up on its side near the moon’s south pole, hampering communications, company officials said Friday.

Intuitive Machines initially believed its six-footed lander, Odysseus, was upright after Thursday's touchdown. But CEO Steve Altemus said Friday the craft “caught a foot in the surface," falling onto its side and, quite possibly, leaning against a rock. He said it was coming in too fast and may have snapped a leg.

“So far, we have quite a bit of operational capability even though we’re tipped over," he told reporters.

But some antennas were pointed toward the surface, limiting flight controllers' ability to get data down, Altemus said. The antennas were stationed high on the 14-foot (4.3-meter) lander to facilitate communications at the hilly, cratered and shadowed south polar region.

Odysseus — the first U.S. lander in more than 50 years — is thought to be within a few miles (kilometers) of its intended landing site near the Malapert A crater, less than 200 miles (300 kilometers) from the south pole. NASA, the main customer, wanted to get as close as possible to the pole to scout out the area before astronauts show up later this decade.

NASA's Lunar Reconnaissance Orbiter will attempt to pinpoint the lander's location, as it flies overhead this weekend.

With Thursday’s touchdown, Intuitive Machines became the first private business to pull off a moon landing, a feat previously achieved by only five countries. Japan was the latest country to score a landing, but its lander also ended up on its side last month.

Odysseus' mission was sponsored in large part by NASA, whose experiments were on board. NASA paid $118 million for the delivery under a program meant to jump-start the lunar economy.

One of the NASA experiments was pressed into service when the lander's navigation system did not kick in. Intuitive Machines caught the problem in advance when it tried to use its lasers to improve the lander's orbit. Otherwise, flight controllers would not have discovered the failure until it was too late, just five minutes before touchdown.

“Serendipity is absolutely the right word,” mission director Tim Crain said.

It turns out that a switch was not flipped before flight, preventing the system's activation in space.

Launched last week from Florida, Odysseus took an extra lap around the moon Thursday to allow time for the last-minute switch to NASA's laser system, which saved the day, officials noted.

Another experiment, a cube with four cameras, was supposed to pop off 30 seconds before touchdown to capture pictures of Odysseus’ landing. But Embry-Riddle Aeronautical University’s EagleCam was deliberately powered off during the final descent because of the navigation switch and stayed attached to the lander.

Embry-Riddle's Troy Henderson said his team will try to release EagleCam in the coming days, so it can photograph the lander from roughly 26 feet (8 meters) away.

"Getting that final picture of the lander on the surface is still an incredibly important task for us,” Henderson told The Associated Press.

Intuitive Machines anticipates just another week of operations on the moon for the solar-powered lander — nine or 10 days at most — before lunar nightfall hits.

The company was the second business to aim for the moon under NASA's commercial lunar services program. Last month, Pittsburgh's Astrobotic Technology gave it a shot, but a fuel leak on the lander cut the mission short and the craft ended up crashing back to Earth.

Until Thursday, the U.S. had not landed on the moon since Apollo 17's Gene Cernan and Harrison Schmitt closed out NASA's famed moon-landing program in December 1972. NASA's new effort to return astronauts to the moon is named Artemis after Apollo's mythological twin sister. The first Artemis crew landing is planned for 2026 at the earliest.

3 female Houston innovators to know this week

who's who

Editor's note: Welcome to another Monday edition of Innovators to Know. Today I'm introducing you to three Houstonians to read up about — three individuals behind recent innovation and startup news stories in Houston as reported by InnovationMap. Learn more about them and their recent news below by clicking on each article.

Emma Konet, co-founder and CTO of Tierra Climate

Emma Konet, co-founder and CTO of Tierra Climate, joins the Houston Innovators Podcast. Photo via LinkedIn

If the energy transition is going to be successful, the energy storage space needs to be equipped to support both the increased volume of energy needed and new energies. And Emma Konet and her software company, Tierra Climate, are targeting one part of the equation: the market.

"To me, it's very clear that we need to build a lot of energy storage in order to transition the grid," Konet says on the Houston Innovators Podcast. "The problems that I saw were really on the market side of things." Read more.

Cindy Taff, CEO of Sage Geosystems

Houston-based Sage Geosystems announced the first close of $17 million round led by Chesapeake Energy Corp. Photo courtesy of Sage

A Houston geothermal startup has announced the close of its series A round of funding.

Houston-based Sage Geosystems announced the first close of $17 million round led by Chesapeake Energy Corp. The proceeds aim to fund its first commercial geopressured geothermal system facility, which will be built in Texas in Q4 of 2024. According to the company, the facility will be the first of its kind.

“The first close of our Series A funding and our commercial facility are significant milestones in our mission to make geopressured geothermal system technologies a reality,” Cindy Taff, CEO of Sage Geosystems, says. Read more.

Clemmie Martin, chief of staff at The Cannon

With seven locations across the Houston area, The Cannon's digital technology allows its members a streamlined connection. Photo courtesy of The Cannon

After collaborating over the years, The Cannon has acquired a Houston startup's digital platform technology to become a "physical-digital hybrid" community.

Village Insights, a Houston startup, worked with The Cannon to create and launch its digital community platform Cannon Connect. Now, The Cannon has officially acquired the business. The terms of the deal were not disclosed.

“The integration of a world-class onsite member experience and Cannon Connect’s superior virtual resource network creates a seamless, streamlined environment for member organizations,” Clemmie Martin, The Cannon’s newly appointed chief of staff, says in the release. “Cannon Connect and this acquisition have paved new pathways to access and success for all.” Read more.