Hobby Airport's new solar canopy is operating at 100% capacity. Photo courtesy Houston Airports.

Houston's William P. Hobby Airport is generating its own clean energy.

Houston Airports announced that Hobby's red garage is now home to a "solar canopy" that is producing energy at 100 percent capacity to power daily operations. The photovoltaic (PV) solar system generated more than 1.1 gigawatt-hours of electricity in testing, and is expected to produce up to 1 megawatt-hour now that it's operating at full power.

“This project is proof that sustainability can be practical, visible and directly tied to the passenger experience,” Jim Szczesniak, director of aviation for Houston Airports, said in a news release. “Passengers now park under a structure that shields their cars from the Texas sun while generating clean energy that keeps airport operations running efficiently, lowering overall peak demand electrical costs during the day and our carbon footprint. It’s a win for travelers, the city and the planet.”

The project was completed by Texas A&M Engineering Experiment Station (TEES) and CenterPoint Energy. It's part of Houston Airport's efforts to reduce carbon emissions by 40 percent over its 2019 baseline.

In a separate announcement, the airport system also shared that it recently reached Level 3 in the Airports Council International (ACI) Airport Carbon Accreditation program after reducing emissions by 19 percent in three years. This includes reductions at George Bush Intercontinental Airport (IAH), Hobby and Ellington Airport/Houston Spaceport.

The reductions have come from initiatives such as adding electric vehicles to airport fleets, upgrading airfield lighting with LED bulbs, adding smarter power systems to terminals, and improving IAH's central utility plant with more efficient equipment. Additionally, the expansion to Hobby's West Concourse and renovations at IAH Terminal B incorporate cleaner equipment and technology.

According to Houston Airports, from 2019 to 2023:

  • IAH reduced emissions by 17 percent
  • Hobby reduced emissions by 32 percent
  • Ellington Airport reduced emissions by 4 percent

"I see firsthand how vital it is to link infrastructure with sustainability,” Houston City Council Member Twila Carter, chair of the council’s Resilience Committee, said in the release. “Reducing carbon emissions at our airports isn’t just about cleaner travel — it’s about smarter planning, safer communities and building a Houston that can thrive for generations to come.”

If we want to see real change, we need action by all parties. Photo via Getty Images

Texas vs the nation: Comparing energy grid resilience across America

guest column

The 2024 Atlantic hurricane season has proven disastrous for the United States. On July 8th, Hurricane Beryl barreled into Texas as a Category 1 storm knocking out power for nearly 3 million, causing over $2.5 billion in damages, and resulting in the deaths of at least 42 people.

More recently, Hurricanes Helene and Milton tore through the East Coast, dropping trillions of gallons of rain on Florida, Georgia, South Carolina, North Carolina, Virginia, and Tennessee, causing dams to collapse, flash flooding, trees to fall, millions of power outages, complete destruction of homes and businesses, and the deaths of hundreds.

Amidst the horror and rescue efforts, wariness of the increasing strength of natural disasters, and repeated failures of energy grids around the nation begs a few questions.

  1. Is there a version of a power grid that can better endure hurricanes, heat waves, and freezes?
  2. How does the Texas grid compare to other regional grids in the United States?
  3. What can we do to solve our power grid problems and who is responsible for implementing these solutions?

Hurricane-proof grids do not exist

There is no version of a grid anywhere in the United States that can withstand the brunt of a massive hurricane without experiencing outages.

The wind, rain, and flooding are simply too much to handle.

Some might wonder, “What if we buried the power lines?” Surely, removing the power lines from the harsh winds, rain, flying debris, and falling tree branches would be enough to keep the lights on, right?

Well, not necessarily. Putting aside the fact that burying power lines is incredibly expensive – estimates range from thousands to millions of dollars per mile buried – extended exposure to water from flood surges can still cause damage to buried lines. To pile on further, flood surges are likely to seriously damage substations and transformers. When those components fail, there’s no power to run through the lines, buried or otherwise.

Heat waves and winter freezes are a different story

During extreme weather events like heat waves or winter freezes, the strain on the grid goes beyond simple issues of generation and distribution—it’s also a matter of human behavior and grid limitations.

Building and maintaining a power grid is extremely expensive, and storing electricity is not only costly but technically challenging. Most grids are designed with little "buffer" capacity to handle peak demand moments, because much of the infrastructure sits idle during normal conditions. Imagine investing billions of dollars in a power plant or wind farm that only operates at full capacity a fraction of the time. It’s difficult to recoup that investment.

When extreme weather hits, demand spikes significantly while supply remains relatively static, pushing the grid to its limits. This imbalance makes it hard to keep up with the surge in energy usage.

At the same time, our relationship with electricity has changed—our need for electricity has only increased. We’ve developed habits—like setting thermostats to 70 degrees or lower during summer heat waves or keeping homes balmy in winter— that, while comfortable, place additional strain on the system.

Behavioral changes, alongside investments in infrastructure, are crucial to ensuring we avoid blackouts as energy demand continues to rise in the coming years.

How the Texas grid compares to other regional grids

Is the Texas grid really in worse shape compared to other regional grids around the U.S.?

In some ways, Texas is lagging and in others, Texas is a leader.

One thing you might have heard about the Texas grid is that it is isolated, which restricts the ability to import power from neighboring regions during emergencies. Unfortunately, connecting the Texas grid further would not be a one-size fits all solution for fixing its problems. The neighboring grids would need to have excess supply at the exact moment of need and have the capacity to transmit that power to the right areas of need. Situations often arise where the Texas grid needs more power, but New Mexico, Oklahoma, Arkansas, and Louisiana have none to spare because they are experiencing similar issues with supply and demand at the same time. Furthermore, even if our neighbors have some power to share, the infrastructure may not be sufficient to deliver the power where it’s needed within the state.

On the other hand, Texas is leading the nation in terms of renewable development. The Lone Star State is #1 in wind power and #2 in solar power, only behind California. There are, of course, valid concerns about heavy reliance on renewables when the wind isn’t blowing or the sun isn’t shining, compounded by a lack of large-scale battery storage. Then, there’s the underlying cost and ecological footprint associated with the manufacturing of those batteries.

Yet, the only state with more utility-scale storage than Texas is California.

In recent years, ERCOT has pushed generators and utility companies to increase their winterization efforts, incentivize the buildout of renewables and electricity storage. You might have also heard about the Texas Electricity Fund, which represents the state’s latest effort to further incentivize grid stability. Improvements are underway, but they may not be enough if homeowners and renters across the state are unwilling to set their thermostats a bit higher during extended heatwaves.

How can we fix the Texas grid?

Here’s the reality we must face – a disaster-proof, on-demand, renewable-powered grid is extremely expensive and cannot be implemented quickly. We must come to terms with the fact that the impact of natural disasters is unavoidable, no matter how much we “upgrade” the infrastructure.

Ironically, the most impactful solution out there is free and requires only a few seconds to implement. Simple changes to human behavior are the strongest tool we have at our disposal to prevent blackouts in Texas. By decreasing our collective demand for electricity at the right times, we can all help keep the lights on and prices low.

During peak hours, the cumulative effort is as simple as turning off the lights, turning the thermostat up a few degrees, and running appliances like dishwashers and laundry machines overnight.

Another important element we cannot avoid addressing is global warming. As the temperatures on the surface of the earth increase, the weather changes, and, in many cases, it makes it more volatile.

The more fossil fuels we burn, the more greenhouse gases are released into the atmosphere. More greenhouse gases in the atmosphere leads to more volatile weather. Volatile weather, in turn, contributes to extreme grid strain in the form of heat waves, winter freezes, and hurricanes. This is no simple matter to solve, because the energy needs and capabilities of different countries differ. That is why some countries around the globe continue to expand their investments in coal as an energy source, the fossil fuel that burns the dirtiest and releases the most greenhouse gases per unit.

While governments and private organizations continue to advance carbon capture, renewable, and energy storage technology efficiency, the individual could aid these efforts by changing our behavior. There are many impactful things we can do to reduce our carbon footprint, like adjusting our thermostat a few degrees, eating less red meat, driving cars less often, and purchasing fewer single-use plastics to name a few.

If we want to see real change, we need action by all parties. The complex system of generation, transmission, and consumption all need to experience radical change, or the vicious cycle will only continue.

———

Sam Luna is director at BKV Energy, where he oversees brand and go-to-market strategy, customer experience, marketing execution, and more.

This article originally ran on EnergyCapital.

Here's why more and more companies — across industries — are making the switch to sustainable technology. Photo via Getty Images

Houston expert on why companies across industries are investing in sustainable energy

guest column

In a modern business landscape characterized by increasing uncertainty and volatility, energy resilience has emerged as a cornerstone of strategic decision-making.

Let's delve deeper into why executives should view energy resilience as one of the best risk management investments they can make.

Mitigating risks and enhancing stability

Investing in energy resilience isn't solely about averting risks; it's about mitigating the potential losses that could arise from energy-related disruptions. It is estimated that half of today’s businesses lack an effective resilience strategy, even though nearly 97 percent of companies have been impacted by a critical risk event.

Whether it's power outages from extreme weather events, grid emergencies from a changing resource mix that is more weather dependent or cyber-attacks, disruptions can inflict substantial financial and reputational damage on businesses. By implementing resilient energy infrastructure and practices, organizations can minimize the impact of such disruptions, ensuring consistent operations even in the face of adversity. As an added benefit, these investments can also contribute to enhancing the stability of our grid infrastructure, benefiting not just individual businesses but the local community and the entire economy.

Improving costs and operational efficiency

Energy resilience also isn't just a defensive strategy; it's also about optimizing costs and operational efficiency to create competitive advantage. By investing in resilient energy infrastructure, such as backup power systems and microgrids, businesses can reduce the downtime associated with energy disruptions, thus avoiding revenue losses and operational inefficiencies.

Additionally, resilient energy solutions often lead to long-term cost savings through increased energy efficiency and reduced reliance on costly backup systems. As circumstances become increasingly uncertain, businesses that prioritize energy resilience can gain a competitive edge by operating more efficiently and cost-effectively than their counterparts.

Ensuring consistent operations amidst uncertainty

In today's rapidly changing business environment, characterized by geopolitical tensions, climate change, and technological advancements, uncertainty has become the new normal. Amidst this uncertainty, ensuring consistent operations is paramount for business continuity and long-term success. Investing in energy resilience provides businesses with the assurance that they can maintain operations even in the face of unforeseen challenges.

Whether it's a sudden power outage from a storm or the grid is stressed and unable to deliver reliable power, resilient energy infrastructure enables organizations to adapt swiftly and continue delivering products and services to customers without interruption.

Enhancing sustainability efforts

In recent years, a growing emphasis on sustainability and environmental stewardship has led to organizations recognizing the importance of reducing their carbon footprint and transitioning towards cleaner, renewable energy sources. Investing in energy resilience provides an opportunity to align sustainability efforts with business objectives.

By integrating renewable energy technologies and energy-efficient practices into their resilience strategies, organizations can not only enhance their environmental performance but also achieve long-term cost savings, ensure regulatory compliance, and build stakeholder trust.

The value of energy resilience for businesses

It is not enough to successfully handle day-to-day operations anymore; organizations need to be prepared for unpredictable events with a reliable energy supply and backup plan. Recently, a hospital in Texas had to evacuate patients and experienced heavy financial losses due to the failure of their traditional diesel generators during an extended outage.

After reevaluating their resiliency strategy, they decided to implement full-facility backup power using Enchanted Rock’s dual-purpose managed microgrid solution, which kept their power on during the next outage and ensured both patient safety and full operational capabilities. Investing in an energy resilience strategy like a microgrid will mitigate these risks and ensure always-on power in times of uncertainty.

A responsible decision for the greater good

Beyond the immediate benefits to individual businesses, investing in energy resilience is also a responsible decision for the greater good. As businesses become increasingly reliant on the grid infrastructure, ensuring its resilience is essential for the stability and reliability of the entire energy ecosystem. By proactively investing in resilient energy solutions, for themselves, businesses also contribute to strengthening the grid infrastructure, reducing the risk of widespread outages, and promoting the overall resilience of the energy system.

Executives must recognize the strategic imperative of investing in resilient energy infrastructure like microgrid systems, which can provide a competitive advantage against organizations that do not have similar measures in place. In doing so, they can navigate uncertainty with confidence, set their business up for future success, and emerge stronger and more resilient than ever before.

———

Ken Cowan is the senior vice president of Enchanted Rock, a Houston-based provider of microgrid technology.

This article originally ran on EnergyCapital.
Lignium combats greenhouse gasses with a green fuel that boasts an enviably low carbon footprint. Photo courtesy of Lignium

Why this growing Chilean clean energy company moved its HQ to Houston

future of farming

In Houston, air pollution is usually more of an abstract concept than a harsh reality. But in parts of Chile, the consequences of heating homes with wet wood are catching up to residents.

“Given all the contamination, there are times kids aren’t allowed to go to school. The air pollution is really affecting people’s health,” says Agustín Ríos, COO of Lignium Energy.

Additionally, the methane and nitrous oxide produced by cattle farming are a problem. But Lignium Energy, an international company started in Chile and now headquartered in Houston’s Greentown Labs, has a solution that can solve both problems by upending the latter.

“There’s a lack of solutions with the problem of manure. Methane gases are destroying our planet,” says CEO and co-founder Enrique Guzmán. He goes on to say that most solutions currently being developed are expensive and complex. But not Lignium Energy’s method, invented by co-founder José Antonio Caraball.

Caraball has patented an extraordinarily simple concept. Lignium separates the solid from liquid excretions, then cleans the solid to generate a hay-like biomass. Biomass refers to organic matter that can be used as fuel. What Lignium makes from the cattle evacuations is a clean, odorless and highly calorific biomass.

Essentially, Lignium combats greenhouse gasses with a green fuel that boasts an enviably low carbon footprint. “Our process is very cheap and very simple. That’s why we are a great solution,” explains Guzmán.

Caraball, an industrial engineer, came up with the idea six years ago, says Guzmán. Five years ago, he began working with the company, one year ago, Guzmán and Ríos picked up and moved to Houston.

“We decided to move out of Chile due to market size,” says Ríos. However, the product is already being sold to consumers in its homeland.

Why Houston? The reason was twofold. As an energy company, Ríos says that they wanted to be in “the energy capital of the world.” But Texas is also one of the largest sites of cattle farming on the planet. Lignium prefers to work with farms with more than 500 head to optimize harvesting the waste that becomes biomass.

With that in mind, Lignium has partnered with Southwest Regional Dairy Center in Stephenville, Texas, a little more than an hour southwest of Fort Worth, a town known as the world’s rodeo capital. The facility is associated with Texas A&M, though Guzmán says Lignium is not officially associated with the university.

Guzmán says that the company is currently hiring a team member to help Lignium figure out commercial logistics, as well as four or five other Houstonians who will help them take their product to market in the United States, and eventually around the globe. For now, he predicts that they will be able to sell to consumers in this country by early next year, if not the fourth quarter of 2023.

“We are very committed to the solution because, at the end of the day, if we do good work with the company, we are sure we can give better conditions to the cattle industry,” says Guzmán. “Then we can make a big impact on a real problem.

Syzygy Plasmonics has released a free online tool that enables users to calculate the greenhouse gas emissions and emission-reduction costs in as little as 60 seconds. Photo via Getty Images

Houston energy tech company launches B2B carbon footprint calculator

seeing green

Houston-area energy tech startup Syzygy Plasmonics is helping businesses and other organizations get a handle on greenhouse gas emissions.

Syzygy just released a free online tool at CarbonModel.com that enables users to calculate the greenhouse gas emissions and emission-reduction costs in as little as 60 seconds. It’s a more straightforward way of making those calculations than is offered by Argonne National Laboratory’s Greenhouse gases, Regulated Emissions, and Energy use in Technologies (GREET) model, the startup says.

Syzygy says it created the tool in light of heightened interest surrounding clean hydrogen. The recently passed federal Inflation Reduction Act includes tax credits for clean hydrogen projects.

“New and existing hydrogen producers, consumers, and project developers are actively seeking to identify and quantify the impacts that the tax credits will have on project economics and feasibility,” Syzygy says in a news release.

Syzygy co-founder and CEO Trevor Best calls the Inflation Reduction Act “a major tailwind” for energy transition and hydrogen adoption.

“Existing hydrogen producers now have the fiscal support needed to sanction new projects. And companies that had been mulling hydrogen as a new business are incentivized to move more quickly,” Best says. “Both existing and new entrants in the hydrogen market want to know if their hydrogen is clean enough to qualify for [Inflation Reduction Act] tax credits.”

Murtuza Marfani, vice president of finance and corporate development at Syzygy, says tools like GREET are “demanding and complex” when it comes to figuring out tax credits for clean hydrogen projects.

“CarbonModel.com simplifies early-stage analysis,” Marfani says. “We see it contributing to the momentum from the [Inflation Reduction Act] by enabling organizations to quickly assess project viability. It will also help them address any gaps in knowledge before committing to full-project modeling.”

CarbonModel.com currently focuses on hydrogen production, but Syzygy says future versions will provide cost and carbon footprint assessments for ammonia, e-fuels, and other chemicals.

Syzygy has developed reactor technology that uses light from ultra-high-efficiency LEDs to power chemical reactions, eliminating the traditional method of producing hydrogen with heat from burning fuel.

In May, Syzygy said it was relocating its headquarters from 9000 Kirby Dr. in Houston to Pearland. It’s leasing a 44,800-square-foot building in Pearland for its headquarters, R&D operations, and manufacturing facilities. The new facility is at 3250 S. Sam Houston Pkwy.

Founded in 2017, Syzygy has created technology that generates clean hydrogen from various feedstocks. Syzygy’s technology is based on an area of science known as photocatalysis, which uses light from LEDs driven by renewable electricity to conduct chemical reactions. The technology can electrify the production of chemicals such as hydrogen, liquid fuels, and fertilizer.

In 2021, the company — whose technology is based on Rice University research — raised $23 million in series B funding. Syzygy has collected a total of $30 million, according to Crunchbase.

Houston claimed the No. 1 spot among the 50 most visited in the U.S. with the lowest carbon footprint. Sean Pavone/Getty Images

Houston steps to top of list of U.S. cities with lowest carbon footprints

seeing green

People looking to travel to a sustainable city probably don’t have Texas spots at the top of their lists. Images of oil, cars, and blasting air conditioners spring up. The Texas power grid, no one need remind us, is barely hanging on.

But Texas blew other states away for lowest carbon footprint per capita, landing Houston at the top of the list compiled by travel blog Park Sleep Fly. Austin followed (No. 3), then San Antonio (No. 4) and Dallas (No. 9). Only Florida appeared twice in the top 10, and none matched Texas with four cities.

Among the 50 most visited in the U.S., those with the lowest carbon footprint are:

1. Houston
2. Los Angeles
3. Austin
4. San Antonio
5. Tampa, Florida
6. Salt Lake City
7. Phoenix
8. Miami
9. Dallas
10. Portland, Oregon

Houston is not exactly a green place, with less-than-ideal utilization of public transportation. It and Dallas tied for third place among least sustainable cities in the same report.

“Public transit isn’t the most popular mode of transportation in Houston, but it does exist,” an online publication called TripSavvy drably admits. The city takes credit for employing “nearly one third” of the nation’s oil and gas extraction workers.

On the renewable side, however, Houston claims more than 100 solar energy companies, and at least half of its corporate research and development centers pursue “energy technology and innovation.” And its huge population spreads the load, leaving only 14.6 metric tons of carbon dioxide per resident — the same as Los Angeles. Big cities seem to have an advantage in this rating system.

Austin is just behind Houston at 15 metric tons per capita, neck-and-neck with San Antonio at 15.2. These two cities have smaller populations to distribute their total footprint, but are generally seen as eco-friendly. Austin got a big head start in 1991 with the introduction of the Austin Energy Green Building program — the first of its kind in the whole country — which created an evaluation system for individual building sustainability that’s still in use. Dallas' carbon footprint is the largest of the Texas cities in the ranking, at 16.5 metric tons per capita.

As such a multifaceted issue (especially tied up in economic concerns), sustainability is hard to pin down from city to city. The multiplicity of this list is yet another indicator that Texas as a whole is a much more nuanced place than many people think.

------

This article originally ran on CultureMap.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

8+ can't-miss Houston business and innovation events in January

where to be

Editor's note: Kick off 2026 by hearing insightful talks and making meaningful connections in Houston's innovation scene. From networking workshops to presentations from major industry leaders, here's what not to miss and how to register. Please note: this article may be updated to include additional event listings.

Jan. 13 – Financing the Future

Hear from James Blake, head of capital markets at Fervo Energy, in this informative talk. Blake will cover the current investment landscape for geothermal power, how geothermal projects are structured and the role of policy incentives and innovative financing models in moving the industry forward. A small reception follows.

This event is Tuesday, Jan. 13, from 5:30-7:30 p.m. at the Ion. Register here.

Jan. 13 – Your Path to the Boardroom

Visit Sesh Coworking to hear from Keith Dorsey, an executive advisor and author of The Boardroom Journey, as he shares insights and lessons from hundreds of corporate board members and presents an actionable roadmap for women at every stage of their careers. Dorsey will speak on what "optimal diversity” means in the boardroom, how purpose-driven leaders sustain resilience under relentless pressure and why inclusive leadership is non-negotiable for growth and innovation.

This event is Tuesday, Jan. 13, from 6-8 p.m. at Sesh Coworking. Register here.

Jan. 14 — A Conversation with Dr. Wayne J. Riley on Leading Through Healthcare Transformation

Rice Business Partners will host Dr. Wayne J. Riley, president of SUNY Downstate Health Sciences University, for a moderated discussion with Dean Peter Rodriguez. Riley will share insights on leading complex healthcare organizations in an era of unprecedented industry challenges and reflect on his time at the Jones Graduate School of Business.

This event is Wednesday, Jan. 14, from 6:30-8:30 p.m. at McNair Hall on Rice University's campus. Register here.

Jan. 14 — VDW: Igniting Connections for Startup Success

Entrepreneurial communications instructor Diana Massaro will lead Lilie's latest Venture Development Workshop, focused on soft skills like clear communication, active listening and compelling introductions. Attendees will gain a personalized networking game plan and communication tools to turn casual encounters into meaningful relationships to support their ventures or careers.

This event is Wednesday, Jan. 14, from 6-7:30 p.m. at the Liu Idea Lab for Innovation and Entrepreneurship on Rice University's campus. Register here.

Jan. 21 — Upstream: Digital Tech Meetup

This month's Upstream: Digital Tech Meetup will explore how AI and real-time monitoring are being applied in safety-critical offshore environments, what’s working today, where the biggest gaps remain going into 2026 and how operators and service companies are approaching adoption. Expect to hear from leaders at NOV, Incom Solutions, Timbergrove and others.

This event is Wednesday, Jan. 21, from 8:30-10:30 a.m. at the Ion. Find more information here.

Jan. 22 — HEAD AND HEART: Leading Technology with Humanity While Everything Changes

Hear from Chris Hyams, former CEO of Indeed, at the latest installment of Rice's Master of Engineering Management & Leadership Seminar Series. Hyams will present on the intersection of technology, humanity and change—and how AI is reshaping all three.

This event is Thursday, Jan. 22, at 6 p.m. at Duncan Hall on Rice University's campus. Find more information here.

Jan. 22 – NASA Tech Talk

This month's NASA Tech Talks will feature a special delegation from the UK Science and Technology Network. Expect to hear from a panel of UK space experts, followed by a fireside chat featuring David Alexander, head of the Rice Space Institute, and Meganne Christian, ESA reserve astronaut and senior exploration manager.

This event is Thursday, Jan. 22, from 6-7 p.m. at the Ion. Find more information here.

Jan. 29 – Ignition Hub Startup Career Fair

Lilie will host the Ignition Hub Startup Career Fair this month in partnership with Rice University’s Center for Career Development and Career Development Office. The fair will bring together some of the most innovative, high-growth companies to offer Rice students exciting opportunities. Startups can apply to be considered for the fair. The event is open to Rice University undergraduate, graduate, MBA, and PhD students.

This event is Thursday, Jan. 29, at Grand Hall on Rice University's campus. Find more information here.

Jan. 29 – Health Policy Symposium: Value-Based Care & the Health Care Workforce

The Humana Integrated Health Systems Science Institute at the University of Houston will host its latest Health Policy Symposium this month, focused on the evolving landscape of value-based care and the importance of preparing and strengthening the health care workforce. Hear keynote addresses from leaders at Humana, UH, the American Medical Association and Houston Health Department.

This event is Thursday, Jan. 29, from 11:30 a.m.-1:30 p.m. at the Tilman J. Fertitta Family College of Medicine on Rice University's campus. Find more information here.

Jan. 30 — GHP Annual Meeting

The Greater Houston Partnership's premier event will highlight the region’s progress, honor visionary leadership and set the tone for the year ahead. Hear reflections from outgoing board chair, Gretchen Watkins (former -president of Shell USA); welcome incoming board chair, Armando Perez (EVP of H-E-B Houston); and more

This event is Friday, Jan. 30, from 11:30 a.m.-1:30 p.m. at Hilton Americas. Find more information here.

CPRIT CEO: Houston’s $2B in funding is transforming cancer research and prevention

fighting cancer

With its plethora of prestigious health care organizations like the University of Texas MD Anderson Cancer Center, UTHealth Houston, and the Baylor College of Medicine, Houston sits at the heart of cancer research and prevention in Texas.

Of course, it takes piles of cash to support Houston’s status as the state’s hub for cancer research and prevention. Much of that money comes from the Cancer Prevention and Research Institute of Texas (CPRIT).

Data supplied by CPRIT shows organizations in Harris County gained $2.3 billion in institute funding from 2009 through 2025, or nearly $145 million per year. That represents almost 60 percent of the roughly $4 billion that CPRIT has granted to Texas institutions over a 16-year period.

“The life sciences ecosystem that has developed and changed in Houston is phenomenal,” Kristen Doyle, who became the agency’s CEO in July 2024, tells InnovationMap. “In the next decade, we will look back and see a great transformation.”

That ecosystem includes more than 1,100 life sciences and biotech companies, according to the Greater Houston Partnership.

Houston plays critical role in clinical trials

Texas voters approved the creation of CPRIT in 2007. Twelve years later, voters agreed to earmark an extra $3 billion for CPRIT, bringing the state agency’s total investment in cancer research and prevention to $6 billion.

To date, CPRIT money has gone toward recruiting 344 cancer researchers to Texas (mainly to Houston) and has supported cancer prevention services for millions of Texans in the state’s 254 counties. CPRIT funding has also helped establish, expand, or relocate 25 cancer-focused companies. In Houston, MD Anderson ranks as the No. 1 recipient of CPRIT funding.

Regarding cancer research, Doyle says Houston plays a critical role in clinical trials.

“[Clinical trials are] something that CPRIT has focused on more and more. Brilliant discoveries are crucial to this whole equation of solving the cancer problem,” Doyle says. “But if those brilliant ideas stay in the labs, then we’ve all failed.”

Researchers conduct more clinical trials in Houston than anywhere else in the U.S., the Greater Houston Partnership says.

Doyle, a 20-year survivor of leukemia, notes that a minority of eligible patients participate in clinical trials for cancer treatments, “and that’s one of the reasons that it takes so long to get a promising drug to market.”

An estimated 7 percent of cancer patients sign up for clinical trials, according to a study published in 2024 in the Journal of Clinical Oncology.

MD Anderson takes on cancer prevention

Doyle also notes that Houston is leading the charge in cancer prevention.

“We get some national recognition for programs that have been developed in Houston that then can be replicated in other parts of the country,” she says.

Much of the work in Houston focusing on cancer prevention takes place at MD Anderson. The hospital reports that it has received more than $725 million from the CPRIT since 2007, representing approximately 18 percent of CPRIT’s total awards.

“These efforts can have profound impact on the lives of patients and their families, and this funding ensures our exemplary clinicians and scientists can continue working together to drive breakthroughs that advance our mission to end cancer,” Dr. Giulio Draetta, chief scientific officer at MD Anderson, said in a November news release, following the most recent CPRIT award for the hospital totaling more than $29 million.

CPRIT funding for Houston institutions supplements the more than $4.5 billion in federal funding for health and life sciences research and innovations that the Houston area received from 2020 to 2024, according to the Greater Houston Partnership.

“We are curing cancer every single day,” Doyle says of CPRIT. “Every step that we are taking — whether that’s funding great ideas or funding the clinical trials that are bringing promising drugs to Texas and to the world — we are making a difference.”

Houston energy tech co. breaks ground on low-cost hydrogen pilot plant

Coming Soon

Houston’s Lummus Technology and Advanced Ionics have broken ground on their hydrogen pilot plant at Lummus’ R&D facility in Pasadena, Texas.

The plant will support Advanced Ionics’ cutting-edge electrolyzer technology, which aims to deliver high-efficiency hydrogen production with reduced energy requirements.

“By demonstrating Advanced Ionics’ technology at our state-of-the-art R&D facility, we are leveraging the expertise of our scientists and R&D team, plus our proven track record of developing breakthrough technologies,” Leon de Bruyn, president and CEO of Lummus, said in a news release. “This will help us accelerate commercialization of the technology and deliver scalable, cost-effective and sustainable green hydrogen solutions to our customers.”

Advanced Ionics is a Milwaukee-based low-cost green hydrogen technology provider. Its electrolyzer converts process and waste heat into green hydrogen for less than a dollar per kilogram, according to the company. The platform's users include industrial hydrogen producers looking to optimize sustainability at an affordable cost.

Lummus, a global energy technology company, will operate the Advanced Ionics electrolyzer and manage the balance of plant systems.

In 2024, Lummus and Advanced Ionics established their partnership to help advance the production of cost-effective and sustainable hydrogen technology. Lummus Venture Capital also invested an undisclosed amount into Advanced Ionics at the time.

“Our collaboration with Lummus demonstrates the power of partnerships in driving the energy transition forward,” Ignacio Bincaz, CEO of Advanced Ionics, added in the news release. “Lummus serves as a launchpad for technologies like ours, enabling us to validate performance and integration under real-world conditions. This milestone proves that green hydrogen can be practical and economically viable, and it marks another key step toward commercial deployment.”

---

This article originally appeared on EnergyCapitalHTX.com.