Rice and MD Anderson scientists are researching new methods for treating brain cancer by overcoming the blood-brain barrier. Photo via Getty Images.

Rice University chemist Han Xiao, who also serves as director of the university’s Synthesis X Center, and cancer biologist Dihua Yu of The University of Texas MD Anderson Cancer Center have received a three-year, $1.5 million grant from the Robert J. Kleberg Jr. and Helen C. Kleberg Foundation.

The funding will allow them to continue their research on treating brain metastasis by overcoming the blood-brain barrier, or the BBB, according to a news release.

Brain metastasis is the leading form of brain cancer, with survival rates below 20 percent within a year of diagnosis, according to the National Library of Medicine. It commonly originates from breast, lung and melanoma cancers.

The BBB typically acts as a protective barrier for the brain. However, it prevents most drugs from being able to directly reach the brain. According to Rice, only 2 percent of FDA-approved small molecule drugs can penetrate the BBB, limiting treatment options.

Xiao and Yu’s approach to dealing with the BBB includes a light-induced brain delivery (LIBD) platform. The advanced system employs nanoparticles that are embedded with a near-infrared dye for the transport of therapeutic agents across the BBB. The research will evaluate the LIBD’s ability to improve the delivery of small-molecule drugs and biological therapies. Some therapies have shown potential for reducing cancer growth in laboratory studies, but they have struggled due to limited BBB penetration in animal models.

“Our LIBD platform represents a novel strategy for delivering drugs to the brain with precision and efficiency,” Xiao said in a news release. “This technology could not only improve outcomes for brain metastasis patients but also pave the way for treating other neurological diseases.”

The Kleberg Foundation looks for groundbreaking medical research proposals from leading institutions that focus on “innovative basic and applied biological research that advances scientific knowledge and human health” according to the foundation.

“This research is a testament to the power of collaboration and innovation,” Xiao said in a news release. “Together, we’re pushing the boundaries of what’s possible in treating brain metastasis and beyond.”

Rice launched the Synthesis X Center, or Synth X, last spring. It was born out of what started about eight years ago as informal meetings between Xiao's research group and others from the Baylor College of Medicine’s Dan L Duncan Comprehensive Cancer Center. It aims to turn fundamental research into clinical applications through collaboration.

“This collaboration builds on the strengths of both research teams,” Xiao said in the release. “By combining SynthX Center's expertise in chemistry with Dr. Yu's expertise in cancer biology and brain metastases, we aim to create a transformative solution.”

Dr. Jenny Chang's cancer research has generated more than $35 million in funding for Houston Methodist. Photo courtesy Houston Methodist

Houston hospital names leading cancer scientist as new academic head

new hire

Houston Methodist Academic Institute has named cancer clinician and scientist Dr. Jenny Chang as its new executive vice president, president, CEO, and chief academic officer.

Chang was selected following a national search and will succeed Dr. H. Dirk Sostman, who will retire in February after 20 years of leadership. Chang is the director of the Houston Methodist Dr. Mary and Ron Neal Cancer Center and the Emily Herrmann Presidential Distinguished Chair in Cancer Research. She has been with Houston Methodist for 15 years.

Over the last five years, Chang has served as the institute’s chief clinical science officer and is credited with strengthening cancer clinical trials. Her work has focused on therapy-resistant cancer stem cells and their treatment, particularly relating to breast cancer.

Her work has generated more than $35 million in funding for Houston Methodist from organizations like the National Institutes of Health and the National Cancer Institute, according to the health care system. In 2021, Dr. Mary Neal and her husband Ron Neal, whom the cancer center is now named after, donated $25 million to support her and her team’s research on advanced cancer therapy.

In her new role, Chang will work to expand clinical and translational research and education across Houston Methodist in digital health, robotics and bioengineered therapeutics.

“Dr. Chang’s dedication to Houston Methodist is unparalleled,” Dr. Marc L. Boom, Houston Methodist president and CEO, said in a news release. “She is committed to our mission and to helping our patients, and her clinical expertise, research innovation and health care leadership make her the ideal choice for leading our academic mission into an exciting new chapter.”

Chang is a member of the American Association of Cancer Research (AACR) Stand Up to Cancer Scientific Advisory Council. She earned her medical degree from Cambridge University in England and completed fellowship training in medical oncology at the Royal Marsden Hospital/Institute for Cancer Research. She earned her research doctorate from the University of London.

She is also a professor at Weill Cornell Medical School, which is affiliated with the Houston Methodist Academic Institute.

AccessPath is a novel, affordable, slide-free pathology system that helps surgeons determine if they have completely removed tumors during surgery. Photo via Getty Images

Promising Houston cancer research project wins $18M grant

fresh funding

The Biden-Harris administration is deploying $150 million as a part of its Cancer Moonshot initiative, and a research team led by Rice University is getting a slice of that pie.

AccessPath is a novel, affordable, slide-free pathology system that helps surgeons determine if they have completely removed tumors during surgery. Rebecca Richards-Kortum, a Rice bioengineering professor and director of the Rice360 Institute for Global Health Technologies, is the lead PI on the project that is receiving up to $18 million over five years from the Advanced Research Projects Agency for Health (ARPA-H).

“Because of its low cost, high speed, and automated analysis, we believe AccessPath can revolutionize real-time surgical guidance, greatly expanding the range of hospitals able to provide accurate intraoperative tumor margin assessment and improving outcomes for all cancer surgery patients,” Richards-Kortum says in a news release.

The project is focused on two types of cancer, breast and head and neck cancer, and Ashok Veeraraghavan, chair of Rice’s Department of Electrical and Computer Engineering and a professor of electrical and computer engineering and computer science, is a co-PI and Tomasz Tkaczyk, a professor of bioengineering and electrical and computer engineering at Rice, is also a collaborator on the project.

AccessPath is addressing the challenge surgeons face of identifying the margin where tumor tissue ends and health tissue begins when removing tumors. The project not only hopes to provide a more exact solution but do so in an affordable way.

“Precise margin assessment is key to the oncologic success of any cancer operation,” adds Dr. Ana Paula Refinetti, an associate professor in the Department of Breast Surgical Oncology at The University of Texas MD Anderson Cancer Center and one of the lead surgeons PIs on the project. “The development of a new low-cost technology that enables immediate margin assessment could transform the landscape of surgical oncology — particularly in low-resource settings, reducing the number of repeat interventions, lowering cancer care costs and improving patient outcomes.”

The project optimizing margin identification with a fast-acting, high-resolution microscope, effective fluorescent stains for dying tumor margins, and artificial intelligence algorithms.

AccessPath is a collaboration between Rice and MD Anderson Cancer Center, other awardees in the grant include the University of Texas Health School of Dentistry, Duke University, Carnegie Mellon University and 3rd Stone Design.

“AccessPath is exactly the kind of life-changing research and health care innovation we are proud to produce at Rice, where we’re committed to addressing and solving the world’s most pressing medical issues,” Ramamoorthy Ramesh, Rice’s executive vice president for research, says in the release. “Partnering with MD Anderson on this vital work underscores the importance of such ongoing collaborations with our neighbors in the world’s largest medical center. I am thrilled for Rebecca and her team; it’s teamwork that makes discoveries like these possible.”

Rebecca Richards-Kortum, a Rice bioengineering professor and director of the Rice360 Institute for Global Health Technologies, is the lead PI on the project. Photo by Jeff Fitlow/Rice University

A new tool being used at Houston Methodist taps into artificial intelligence breast cancer diagnosis. Photo courtesy of Houston Methodist

Houston hospital uses AI to create new breast cancer risk calculator

iBrisk

In the medical field, billions of dollars are wasted each year — about $935 billion, but who's counting? According to a paper published by the JAMA Network, an estimated $75.7 billion to $101.2 billion is wasted through overtreatment. Of the many procedures that can lead to wasted resources, breast cancer biopsies are a major source of overtreatment. Houston Methodist Hospital is using artificial intelligence to create a more efficient and accurate Breast Cancer Risk Calculator, called iBrisk.

Breast cancer is something that plagues the lives of many women, and some men. According to the National Breast Cancer Foundation, one in eight women will be diagnosed with breast cancer in their lifetime.

Women are advised to start having annual mammograms to screen for breast cancer starting at age 40 to try to catch cancer in its earliest stages. With mammograms becoming a standard procedure, the process inevitably leads to more biopsies.

While more biopsies sound like the obvious course of action, Houston Methodist Hospital shares that out of 10,000 women biopsied, less than two will be positive while using the national standard. The result of a negative biopsy? Wasted time, resources, and money, as well as undue worry for the patient.

"It's not just wasteful. . .when you do an unnecessary procedure, you're potentially harming the patient," says Stephen Wong, Ph.D. After a negative biopsy, Dr. Wong explains that patients often begin to show emotional responses like high anxiety and low self-esteem. They often speculate the biopsies are wrong, and that they've had a missed cancer diagnosis by their medical provider.

Dr. Wong estimates that more than 700,000 patients have unnecessary biopsies in the breast cancer category alone.

Spearheading the iBrisk tool, Dr. Wong has found a way to utilize a smarter model than the current system for detecting breast cancer risk.

Hospitals across the country currently use the Breast Imaging Reporting and Database System score (BI-RADS), a system created by the American College of Radiology to determine breast cancer risk and biopsy decision-making.

To expand on BI-RADS data, Dr. Wong used multiple patient data points and AI technology to create the improved system. The iBRISK integrates natural language processing, medical image analysis, and deep learning on multi-modal BI-RADS patient data to make one of three recommendations: biopsy not recommended, consider biopsy, or biopsy recommended.

"While using AI, we try to simulate how the physician thinks," explains Dr. Wong. "The physician looks at different data: imaging, patient clinical data, demographic, history and other social factors. You don't rely on one particular thing."

To create iBrisk, Dr. Wong used 12 to 13 years of BI-RAD data at Houston Methodist Hospital to train the AI using deep learning.

He estimates that more than 80 percent of technical information is in the free text format, meaning unstructured data, in the United States.

"We applied an AI technique called natural language processing, which is using the computer to read the text automatically for us," explains Dr. Wong.

This data extraction tool was also used with imaging of mammogram ultrasounds by applying image analysis computer vision.

iBrisk also deploys deep learning, a machine learning tactic where artificial neural networks, inspired by the human brain, learn from large amounts of data. They determined approximately 100 parameters to analyze, including age, sex, socio-economic data, medical history, and insurance plans. After putting the data points into a deep learning method, the AI reduced the data points to the 20 risk indicators.

Houston Methodist Hospital used an estimated 11,000 cases for training, and then used 2,200 of its own data to test iBrisk. They have even been able to create unbiased independent validation by working with other hospitals like MD Anderson, testing their patients using iBrisk and confirming the results.

The potential of iBrisk to cut costs and contribute to less overtreatment has garnered support with other hospitals around the country. The breast cancer risk calculator is a collaboration with Dr. Jenny Chang of HMCC and breast oncologists at MD Anderson, UT San Antonio, and University of Utah Cancer Center.

While implicit racial bias has become a more prominent issue in the United States, Houston Methodist's iBrisk grants a neutral, unbiased lens. AI isn't immune to racial bias; in fact, computer scientist and founder of the Algorithmic Justice League, Joy Buolamwini, uncovered the large gender and racial biases of AI systems sold by IBM, Amazon and Microsoft in a 2019 article for Time.

With AI's history of racial bias in mind, Dr. Wong set out to create an impartial, fair system. "Our AI data is not sensitive to race. . .it's unbiased," he explains.

Houston Methodist Hospital plans to expand the iBrisk model to other forms of cancer in the future, including its next venture into thyroid and incidental lung nodule screenings.

The AI allows patients to save the stress of getting a biopsy.

"We are very careful to put any drugs or any procedure into clinical workflow until we are very sure you really have to pick this [outcome]," explains Dr. Wong. Using advanced risk detectors like iBrisk allows medical practitioners to make more thorough, informed decisions for patients looking into biopsies.

The categories are broken into low, moderate and high-risk groups. The low-risk groups have seen a 99.8 percent accuracy in results, missing only two cases out of a sample of 1,228. Patients that have fallen into the high-risk groups (leading patients to get a biopsy) have seen an 85.9 percent accuracy, compared to radiology, which is 25 percent accurate according to Dr. Wong.

Dr. Wong notes that patients that fall in the moderate section of the risk assessment can then have a dialogue with their physician to determine if they want to move forward with the biopsy. In the moderate category, there is a 93.4 percent accuracy.

If implemented, iBrisk would be able to reduce 75 percent of unnecessary biopsies, estimates Dr. Wong.

Currently, Houston Methodist Hospital is using AI technology outside of oncology, with the recent release of a tool that can diagnose strokes using a smartphone, announced in Science Daily. The tool, which can diagnose abnormalities in a patient's speech and facial muscular movements, was made in collaboration with Dr. Jay Volpi of Eddy Scullock Stroke Center at Houston Methodist Hospital.

"We are answering bigger questions," explains Dr. Wong, who looks forward to continuing to expand AI capabilities and risk calculators at Houston Methodist Hospital.

In the future, Dr. Wong looks forward to doing a multicenter trial to bring this technology outside of Texas.

Texans see need for telemedicine amid the pandemic, Liftoff Houston has launched applications, ChipMonk Bakery is growing, and more of the latest Houston innovation news. Getty Images

Startups raise funds, Houston biz contest opens apps, and more innovation news

Short stories

From health-conscious cookies reaching fundraising goals to a Houston-wide business competition, the Bayou City's innovation news is pretty diverse.

In InnovationMap's latest roundup of startup and tech short stories, there's everything from telemedicine, fundraising, and more.

Houston baking startup raises money after finding its new home

ChipMonk Baking Company, a consumer packaged goods startup focused on healthy dessert options, has met its goal of $150,000. Photo courtesy of ChipMonk

Houston-based ChipMonk Baking Company, which recently found a new home in a new dedicated production facility, has reached its goal on its investment round on NextSeed.

ChipMonk, which was founded last year to create sweets that use sweeteners monk fruit and allulose for health-conscious consumers, will soon operate in a 2,300-square-foot space at 3042 Antoine Dr. The space is strictly for baking, storage, etc. and will not have a storefront.

Co-founders Jose Hernandez and David Downing have seen a spike in demand since the start of the pandemic, which increased the need to upgrade from shared kitchen space.

"The stay-at-home environment has encouraged many people to think more about their health and to start cooking and baking more at home. We've been able to offer a delicious option that fits perfectly in this growing trend," says Downing, who also serves as CEO.

ChipMonk's lease begins next month, and, to fund its growth plans, the company launched a its campaign on NextSeed. In just a couple weeks, the startup met its fundraising goal of $150,000.

Cancer nonprofit moves into new space

The Rose has a new facility to better serve patients. Photos courtesy of The Rose

The Rose, a Houston-based breast cancer nonprofit that provides medical services to 40,000 patients annually, has moved into its new space at 6575 West Loop South, suite 275, in May.

"We know this location will allow us to better serve our community," says Dorothy Gibbons, co-founder and CEO of The Rose, in a news release. "During this time of the pandemic, we've added so many safety precautions and will continue to space appointments to allow social distancing. Most of all we want our patients to feel safe and welcome from the moment they walk through our door."

Amid the COVID-19 pandemic, data reports have shown a drop in routine health care, like cervical and breast cancer screenings. Gibbons says the drop in these appointments is concerning and those who postpone routine screening or diagnostic testing could be at risk for developing later stage breast cancer.

"Our message to our patients is breast cancer is not going to wait until this pandemic is over; neither should you. With the projected increase in uninsured women, due to so many job losses, The Rose has to be ready to serve. Now more than ever, we depend on our insured patients to help cover the care for uninsured patients," she says.

Houston business competition opens applications

Small businesses in Houston have until August 10 to apply for the annual Liftoff Houston competition. Photo via liftoffhouston.smapply.org

The city of houston's annual business plan competition, Liftoff Houston, has opened applications. The program, which is sponsored by Capital One Bank, is looking for companies and will award winners in three categories: Product, service, and innovation

Each business that wins will receive a $10,000 cash prize. The competition is focused on early stage startups with revenue less than $10,000 and must have only been in business for less than a year. The companies also must be based in Houston.

Applicants can submit their information online to be considered for the contest. The deadline to apply is August 10.

TMCx company closes $1.53 million seed round

Manatee

Manatee has raised funds for its digital therapy platform. Photo via getmanatee.com

Manatee, a health tech startup based in Denver that was a member of this year's TMCx cohort, has announced it closed its seed funding round at $1.53 million. The company, which provides digital solutions to therapy for children, closed the round at the end of June.

Michigan-based Grand Ventures led the raise and invested alongside The American Family Insurance Institute (AmFam), Telosity, SpringTime Ventures, and notable health care entrepreneurs, Danish Munir, Luke Leninger, and Johnathan Weiner, according to information emailed by Manatee representative.

"Manatee was the first solution we found that really understood kids and their unique needs," says Christopher Neuharth, executive director of digital health and experience at Children's Wisconsin. "They got the dynamics between the child, parent, and therapist – and how to influence behavior change."

Accenture study finds COVID-19 has been a gamechanger for telemedicine

Houston medical organizations pivot to telemedicine and remote care amid COVID-19 crisis

An Accenture study found that most Texans are seeking telehealth amid the pandemic. Getty Images

According to a recent study from Accenture, 89 percent of Texas consumers want telehealth options — and the COVID-19 pandemic deserves the credit for the increased interest.

According to a press release from the company, the research found that:

  • One-fourth of Texans surveyed said they first learned about virtual health care following the outbreak of COVID-19.
  • The number of Texans who said they know a little or a lot about virtual health care increased 25 percent following the outbreak.
  • Approximately nine in 10 Texans surveyed after the pandemic began believe that virtual care options should be available to everyone.

The widespread stay-at-home orders exposed Texans to virtual health care and left a positive impression on receiving care remotely. For instance:

  • An estimated 4.5 million state residents began using virtual health care services since the onset of the pandemic.
  • Nearly half (45 percent) of Texans said they trust a virtual health visit as much as or more than an in-person visit—a 15 percent uptick from the pre-pandemic period.
  • Six out of seven remote-care patients (86 percent) who have continued to use virtual care options during the pandemic said their experience after the start of the COVID-19 outbreak was better or the same as before, and three-quarters (76 percent) said their wait time was shorter or the same.

"A lot of Texans got a taste for what it's like to see their physicians and specialists from the safety and comfort of their home," says Mark Olney, a managing director in Accenture's health practice and the study's lead author. "Now patients are eager to get more of that access, convenience and time savings."

Breakthrough research on metastatic breast cancer, a new way to turn toxic pollutants into valuable chemicals, and an evolved brain tumor chip are three cancer-fighting treatments coming out of Houston. Getty Inages

These 3 Houston research projects are aiming to fight or prevent cancer

Research roundup

Cancer remains to be one of the medical research community's huge focuses and challenges, and scientists in Houston are continuing to innovate new treatments and technologies to make an impact on cancer and its ripple effect.

Three research projects coming out of Houston institutions are providing solutions in the fight against cancer — from ways to monitor treatment to eliminating cancer-causing chemicals in the first place.

Baylor College of Medicine's breakthrough in breast cancer

Photo via bcm.edu

Researchers at Baylor College of Medicine and Harvard Medical School have unveiled a mechanism explains how "endocrine-resistant breast cancer acquires metastatic behavior," according to a news release from BCM. This research can be game changing for introducing new therapeutic strategies.

The study was published in the Proceedings of the National Academy of Sciences and shows that hyperactive FOXA1 signaling — previously reported in endocrine-resistant metastatic breast cancer — can trigger genome-wide reprogramming that enhances resistance to treatment.

"Working with breast cancer cell lines in the laboratory, we discovered that FOXA1 reprograms endocrine therapy-resistant breast cancer cells by turning on certain genes that were turned off before and turning off other genes," says Dr. Xiaoyong Fu, assistant professor of molecular and cellular biology and part of the Lester and Sue Smith Breast Center at Baylor, in the release.

"The new gene expression program mimics an early embryonic developmental program that endow cancer cells with new capabilities, such as being able to migrate to other tissues and invade them aggressively, hallmarks of metastatic behavior."

Patients whose cancer is considered metastatic — even ones that initially responded to treatment — tend to relapse and die due to the cancer's resistance to treatment. This research will allow for new conversations around therapeutic treatment that could work to eliminate metastatic cancer.

University of Houston's evolved brain cancer chip

Photo via uh.edu

A biomedical research team at the University of Houston has made improvements on its microfluidic brain cancer chip. The Akay Lab's new chip "allows multiple-simultaneous drug administration, and a massive parallel testing of drug response for patients with glioblastoma," according to a UH news release. GBM is the most common malignant brain tumor and makes up half of all cases. Patients with GBM have a five-year survival rate of only 5.6 percent.

"The new chip generates tumor spheroids, or clusters, and provides large-scale assessments on the response of these GBM tumor cells to various concentrations and combinations of drugs. This platform could optimize the use of rare tumor samples derived from GBM patients to provide valuable insight on the tumor growth and responses to drug therapies," says Metin Akay, John S. Dunn Endowed Chair Professor of Biomedical Engineering and department chair, in the release.

Akay's team published a paper in the inaugural issue of the IEEE Engineering in Medicine & Biology Society's Open Journal of Engineering in Medicine and Biology. The report explains how the technology is able to quickly assess how well a cancer drug is improving its patients' health.

"When we can tell the doctor that the patient needs a combination of drugs and the exact proportion of each, this is precision medicine," Akay explains in the release.

Rice University's pollution transformation technology

Photo via rice.edu

Rice University engineers have developed a way to get rid of cancer-causing pollutants in water and transform them into valuable chemicals. A team lead by Michael Wong and Thomas Senftle has created this new catalyst that turns nitrate into ammonia. The study was published in the journal ACS Catalysis.

"Agricultural fertilizer runoff is contaminating ground and surface water, which causes ecological effects such as algae blooms as well as significant adverse effects for humans, including cancer, hypertension and developmental issues in babies," says Wong, professor and chair of the Department of Chemical and Biomolecular Engineering in Rice's Brown School of Engineering, in a news release. "I've been very curious about nitrogen chemistry, especially if I can design materials that clean water of nitrogen compounds like nitrites and nitrates."

The ability to transform these chemicals into ammonia is crucial because ammonia-based fertilizers are used for global food supplies and the traditional method of creating ammonia is energy intensive. Not only does this process eliminate that energy usage, but it's ridding the contaminated water of toxic chemicals.

"I'm excited about removing nitrite, forming ammonia and hydrazine, as well as the chemistry that we figured out about how all this happens," Wong says in the release. "The most important takeaway is that we learned how to clean water in a simpler way and created chemicals that are more valuable than the waste stream."

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Autonomous truck company rolls out driverless Houston-Dallas route

up and running

Houston is helping drive the evolution of self-driving freight trucks.

In October, Aurora opened a more than 90,000-square-foot terminal at a Fallbrook Drive logistics hub in northwest Houston to support the launch of its first “lane” for driverless trucks—a Houston-to-Dallas route on the Interstate 45 corridor. Aurora opened its Dallas-area terminal in April and the company began regular driverless customer deliveries between the two Texas cities on April 27.

Close to half of all truck freight in Texas moves along I-45 between Houston and Dallas.

“Now, we are the first company to successfully and safely operate a commercial driverless trucking service on public roads. Riding in the back seat for our inaugural trip was an honor of a lifetime – the Aurora Driver performed perfectly and it’s a moment I’ll never forget,” Chris Urmson, CEO and co-founder of Pittsburgh-based Aurora, said in a news release.

Aurora produces software that controls autonomous vehicles and is known for its flagship product, the Aurora Driver. The software is installed in Volvo and Paccar trucks, the latter of which includes brands like Kenworth and Peterbilt.

Aurora previously hauled more than 75 loads per week under the supervision of vehicle operators from Houston to Dallas and Fort Worth to El Paso for customers in its pilot project, including FedEx, Uber Freight and Werner. To date, it has completed over 1,200 miles without a driver.

The company launched its new Houston to Dallas route with customers Uber Freight and Hirschbach Motor Lines, which ran supervised commercial pilots with Aurora.

“Transforming an old school industry like trucking is never easy, but we can’t ignore the safety and efficiency benefits this technology can deliver. Autonomous trucks aren’t just going to help grow our business – they’re also going to give our drivers better lives by handling the lengthier and less desirable routes,” Richard Stocking, CEO of Hirschbach Motor Lines, added in the statement.

The company plans to expand its service to El Paso and Phoenix by the end of 2025.

“These new, autonomous semis on the I-45 corridor will efficiently move products, create jobs, and help make our roadways safer,” Gov. Greg Abbott added in the release. “Texas offers businesses the freedom to succeed, and the Aurora Driver will further spur economic growth and job creation in Texas. Together through innovation, we will build a stronger, more prosperous Texas for generations.”

In July, Aurora said it raised $820 million in capital to fuel its growth—growth that’s being accompanied by scrutiny.

In light of recent controversies surrounding self-driving vehicles, the International Brotherhood of Teamsters, whose union members include over-the-road truckers, recently sent a letter to Lt. Gov. Dan Patrick calling for a ban on autonomous vehicles in Texas.

“The Teamsters believe that a human operator is needed in every vehicle—and that goes beyond partisan politics,” the letter states. “State legislators have a solemn duty in this matter to keep dangerous autonomous vehicles off our streets and keep Texans safe. Autonomous vehicles are not ready for prime time, and we urge you to act before someone in our community gets killed.”

Houston cell therapy company launches second-phase clinical trial

fighting cancer

A Houston cell therapy company has dosed its first patient in a Phase 2 clinical trial. March Biosciences is testing the efficacy of MB-105, a CD5-targeted CAR-T cell therapy for patients with relapsed or refractory CD5-positive T-cell lymphoma.

Last year, InnovationMap reported that March Biosciences had closed its series A with a $28.4 million raise. Now, the company, co-founded by Sarah Hein, Max Mamonkin and Malcolm Brenner, is ready to enroll a total of 46 patients in its study of people with difficult-to-treat cancer.

The trial will be conducted at cancer centers around the United States, but the first dose took place locally, at The University of Texas MD Anderson Cancer Center. Dr. Swaminathan P. Iyer, a professor in the department of lymphoma/myeloma at MD Anderson, is leading the trial.

“This represents a significant milestone in advancing MB-105 as a potential treatment option for patients with T-cell lymphoma who currently face extremely limited therapeutic choices,” Hein, who serves as CEO, says. “CAR-T therapies have revolutionized the treatment of B-cell lymphomas and leukemias but have not successfully addressed the rarer T-cell lymphomas and leukemias. We are optimistic that this larger trial will further validate MB-105's potential to address the critical unmet needs of these patients and look forward to reporting our first clinical readouts.”

The Phase 1 trial showed promise for MB-105 in terms of both safety and efficacy. That means that potentially concerning side effects, including neurological events and cytokine release above grade 3, were not observed. Those results were published last year, noting lasting remissions.

In January 2025, MB-105 won an orphan drug designation from the FDA. That results in seven years of market exclusivity if the drug is approved, as well as development incentives along the way.

The trial is enrolling its single-arm, two-stage study on ClinicalTrials.gov. For patients with stubborn blood cancers, the drug is providing new hope.

Elon Musk's SpaceX site officially becomes the city of Starbase, Texas

Starbase, Texas

The South Texas home of Elon Musk’s SpaceX rocket company is now an official city with a galactic name: Starbase.

A vote Saturday, May 3, to formally organize Starbase as a city was approved by a lopsided margin among the small group of voters who live there and are mostly Musk’s employees at SpaceX. With all the votes in, the tally was 212 in favor to 6 against, according to results published online by the Cameron County Elections Department.

Musk celebrated in a post on his social platform, X, saying it is “now a real city!”

Starbase is the facility and launch site for the SpaceX rocket program that is under contract with the Department of Defense and NASA that hopes to send astronauts back to the moon and someday to Mars.

Musk first floated the idea of Starbase in 2021 and approval of the new city was all but certain. Of the 283 eligible voters in the area, most are believed to be Starbase workers.

The election victory was personal for Musk. The billionaire’s popularity has diminished since he became the chain-saw-wielding public face of President Donald Trump’s federal job and spending cuts, and profits at his Tesla car company have plummeted.

SpaceX has generally drawn widespread support from local officials for its jobs and investment in the area.

But the creation of an official company town has also drawn critics who worry it will expand Musk’s personal control over the area, with potential authority to close a popular beach and state park for launches.

Companion efforts to the city vote include bills in the state Legislature to shift that authority from the county to the new town’s mayor and city council.

All these measures come as SpaceX is asking federal authorities for permission to increase the number of South Texas launches from five to 25 a year.

The city at the southern tip of Texas near the Mexico border is only about 1.5 square miles (3.9 square kilometers), crisscrossed by a few roads and dappled with airstream trailers and modest midcentury homes.

SpaceX officials have said little about exactly why they want a company town and did not respond to emailed requests for comment.

“We need the ability to grow Starbase as a community,” Starbase General Manager Kathryn Lueders wrote to local officials in 2024 with the request to get the city issue on the ballot.

The letter said the company already manages roads and utilities, as well as “the provisions of schooling and medical care” for those living on the property.

SpaceX officials have told lawmakers that granting the city authority to close the beach would streamline launch operations. SpaceX rocket launches and engine tests, and even just moving certain equipment around the launch base, requires the closure of a local highway and access to Boca Chica State Park and Boca Chica Beach.

Critics say beach closure authority should stay with the county government, which represents a broader population that uses the beach and park. Cameron County Judge Eddie Trevino, Jr. has said the county has worked well with SpaceX and there is no need for change.

Another proposed bill would make it a Class B misdemeanor with up to 180 days in jail if someone doesn’t comply with an order to evacuate the beach.

The South Texas Environmental Justice Network, which has organized protests against the city vote and the beach access issue, held another demonstration Saturday that attracted dozens of people.

Josette Hinojosa, whose young daughter was building a sandcastle nearby, said she was taking part to try to ensure continued access to a beach her family has enjoyed for generations.

With SpaceX, Hinojosa said, “Some days it’s closed, and some days you get turned away."

Organizer Christopher Basaldú, a member of the Carrizo/Comecrudo Nation of Texas tribe, said his ancestors have long been in the area, where the Rio Grande meets the Gulf.

“It’s not just important,” he said, “it’s sacred.”