Houston-based health tech organization had experiments on Blue Origin's last mission. Photo courtesy of Blue Origin

Houston's Translational Research Institute for Space Health, or TRISH, conducted cutting-edge research onboard Blue Origin's New Shepard rocket that launched Friday, November 22.

The NS-28 mission sent private astronauts on an 11-minute suborbital journey past the recognized boundary of space known as the Kármán line, according to Blue Origin's website. While on board, astronauts wore a medical-grade BioButton device, known as a BioIntelliSense, that monitored vital signs and biometric readings.

The findings will add to TRISH's Enhancing eXploration Platforms and ANalog Definition, or EXPAND, program and were the first data sets captured from a suborbital flight.

“This initiative enables TRISH to further our research in space medicine by collecting valuable human health data,” Jimmy Wu, TRISH deputy director and chief engineer and assistant professor at Baylor, said in a statement. “New data from suborbital flights builds our understanding of how the human body responds to spaceflight. This holistic view is key in keeping humans healthy and safe in space.”

The experiments were also TRISH's first on a Blue Origin mission.

TRISH, which is part of BCM’s Center for Space Medicine with partners Caltech and MIT, has launched experiments on numerous space missions to date, with each contributing to its EXPAND platform, which compiles research on human health while in space.

In January, TRISH launched six experiments onboard Houston-based Axiom Space's third private astronaut mission to the International Space Station, known as Ax-3. Prior to that, it also sent experiments on board the Ax-2 in May 2023. The research considered topics ranging from changes in astronauts memory before and after space travel to sleep and motor skills.

TRISH also launched experiments onboard SpaceX's Polaris Dawn mission this fall and on the Inspiration4 all-civilian mission to orbit in 2021.

TRISH published its findings from the Inspiration4 mission in the journal Nature this summer. The study showed that "short-duration missions do not pose a significant health risk" to humans onboard. Read more about the team's findings here.

Houston Methodist has entered into an agreement with a medical device company. Photo via globenewswire.com

Houston hospital taps health tech company for remote monitoring and analytics partnership

hi, tech

A Houston health care system has announced a new partnership with a medical device company that specializes in continuous health monitoring and clinical intelligence.

Houston Methodist and Colorado-based BioIntelliSense announced a new collaboration to advance remote monitoring and analytics from in-hospital to at-home. BioIntelliSense’s technology includes its FDA-cleared BioSticker and medical grade BioButton. The two devices are wearable and, when paired with algorithmic-based data services, the technologies enable remote data capture and continuous monitoring of over 20 biometrics — up to 1,440 sets of vital sign measurements daily —for up to 30 days on a single device.

“This new strategic collaboration with BioIntelliSense exemplifies Houston Methodist’s continued commitment to advancing world-class expertise and greater efficiency to deliver the highest quality and most impactful care,” says Dr. Sarah Pletcher, vice president and executive medical director of strategic innovation at Houston Methodist, in a news release. “This collaboration keeps the patient at the center as we continue to maximize our leadership in healthcare innovation.”

The two entities executed Memorandum of Understanding that identifies several areas of strategic focus for improving patient care, increasing clinical workflow efficiencies, and reducing the burden on healthcare systems. BioIntelliSense and Houston Methodist will work together to develop a state-of-the-art virtual care control center at Houston Methodist.

“Data-driven remote patient monitoring that is simple, clinically accurate, and cost-effective, is the future of healthcare delivery,” says James Mault, MD, Founder and CEO of BioIntelliSense. “We are proud to work alongside our partners at Houston Methodist to pioneer a continuous care model that provides actionable data and clinical intelligence to enable our overburdened healthcare workforce take better care of patients in any care setting.”

According to the news release, the MOU further establishes the use of leading biosensor technology and the development of advanced algorithms, care models, and data analytics for monitoring and treating a range of complex conditions spanning heart and vascular, orthopedics, oncology, infectious diseases, transplants, and others.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston-area lab grows with focus on mobile diagnostics and predictive medicine

mobile medicine

When it comes to healthcare, access can be a matter of life and death. And for patients in skilled nursing facilities, assisted living or even their own homes, the ability to get timely diagnostic testing is not just a convenience, it’s a necessity.

That’s the problem Principle Health Systems (PHS) set out to solve.

Founded in 2016 in Clear Lake, Texas, PHS began as a conventional laboratory but quickly pivoted to mobile diagnostics, offering everything from core blood work and genetic testing to advanced imaging like ultrasounds, echocardiograms, and X-rays.

“We were approached by a group in a local skilled nursing facility to provide services, and we determined pretty quickly there was a massive need in this area,” says James Dieter, founder, chairman and CEO of PHS. “Turnaround time is imperative. These facilities have an incredibly sick population, and of course, they lack mobility to get the care that they need.”

What makes PHS unique is not only what they do, but where they do it. While they operate one of the largest labs serving skilled nursing facilities in the state, their mobile teams go wherever patients are, whether that’s a nursing home, a private residence or even a correctional facility.

Diagnostics, Dieter says, are at the heart of medical decision-making.

“Seventy to 80 percent of all medical decisions are made from diagnostic results in lab and imaging,” he says. “The diagnostic drives the doctor’s or the provider’s next move. When we recognized a massive slowdown in lab results, we had to innovate to do it faster.”

Innovation at PHS isn’t just about speed; it’s about accessibility and precision.

Chris Light, COO, explains: “For stat testing, we use bedside point-of-care instruments. Our phlebotomists take those into the facilities, test at the bedside, and get results within minutes, rather than waiting days for results to come back from a core lab.”

Scaling a mobile operation across multiple states isn’t simple, but PHS has expanded into nine states, including Texas, Oklahoma, Kansas, Missouri and Arizona. Their model relies on licensed mobile phlebotomists, X-ray technologists and sonographers, all trained to provide high-level care outside traditional hospital settings.

The financial impact for patients is significant. Instead of ambulance rides and ER visits costing thousands, PHS services often cost just a fraction, sometimes only tens or hundreds of dollars.

“Traditionally, without mobile diagnostics, the patient would be loaded into a transportation vehicle, typically an ambulance, and taken to a hospital,” Dieter says. “Our approach is a fraction of the cost but brings care directly to the patients.”

The company has also embraced predictive and personalized medicine, offering genetic tests that guide medication decisions and laboratory tests that predict cognitive decline from conditions like Alzheimer's and Parkinson’s.

“We actively look for complementary services to improve patient outcomes,” Dieter says. “Precision medicine and predictive testing have been a great value-add for our providers.”

Looking to the future, PHS sees mobile healthcare as part of a larger trend toward home-based care.

“There’s an aging population that still lives at home with caretakers,” Dieter explains. “We go into the home every day, whether it’s an apartment, a standalone home, or assisted living. The goal is to meet patients where they are and reduce the need for hospitalization.”

Light highlighted another layer of innovation: predictive guidance.

“We host a lot of data, and labs and imaging drive most treatment decisions,” Light says. “We’re exploring how to deploy diagnostics immediately based on results, eliminating hours of delay and keeping patients healthier longer.”

Ultimately, innovation at PHS isn’t just about technology; it’s about equity.

“There’s an 11-year life expectancy gap between major metro areas and rural Texas,” Dieter says. “Our innovation has been leveling the field, so everyone has access to high-quality diagnostics and care, regardless of where they live.”

Aegis Aerospace appoints Houston space leader as new president

moving up

Houston-based Aegis Aerospace's current chief strategy officer, Matt Ondler, will take on the additional role of president on Jan. 1. Ondler will succeed Bill Hollister, who is retiring.

“Matt's vision, experience, and understanding of our evolving markets position us to build on our foundation and pursue new frontiers,” Stephanie Murphy, CEO of Aegis Aerospace, said in a news release.

Hollister guided Aegis Aerospace through expansion and innovation in his three years as president, and will continue to serve in the role of chief technology officer (CTO) for six months and focus on the company's technical and intellectual property frameworks.

"Bill has played an instrumental role in shaping the success and growth of our company, and his contributions leave an indelible mark on both our culture and our achievements," Murphy said in a news release.

Ondler has a background in space hardware development and strategic leadership in government and commercial sectors. Ondler founded subsea robots and software company Houston Mechatronics, Inc., now known as Nauticus Robotics, and also served as president, CTO and CSO during a five-year tenure at Axiom Space. He held various roles in his 25 years at NASA and was also named to the Texas Aerospace Research and Space Economy Consortium Executive Committee last year.

"I am confident that with Matt at the helm as president and Bill supporting us as CTO, we will continue to build on our strong foundation and further elevate our impact in the space industry," Murphy said in a news release. "Matt's vision, experience, and understanding of our evolving markets position us to build on our foundation and pursue new frontiers."

Rice University launches new center to study roots of Alzheimer’s and Parkinson’s

neuro research

Rice University launched its new Amyloid Mechanism and Disease Center last month, which aims to uncover the molecular origins of Alzheimer’s, Parkinson’s and other amyloid-related diseases.

The center will bring together Rice faculty in chemistry, biophysics, cell biology and biochemistry to study how protein aggregates called amyloids form, spread and harm brain cells. It will serve as the neuroscience branch of the Rice Brain Institute, which was also recently established.

The team will work to ultimately increase its understanding of amyloid processes and will collaborate with the Texas Medical Center to turn lab discoveries into real progress for patients. It will hold its launch event on Jan. 21, 2026, and hopes to eventually be a launchpad for future external research funding.

The new hub will be led by Pernilla Wittung-Stafshed, a Rice biophysicist and the Charles W. Duncan Jr.-Welch Chair in Chemistry.

“To make a real difference, we have to go all the way and find a cure,” Wittung-Stafshede said in a news release. “At Rice, with the Amyloid Mechanism and Disease Center as a catalyst, we have the people and ideas to open new doors toward solutions.”

Wittung-Stafshede, who was recruited to Rice through a Cancer Prevention and Research Institute of Texas grant this summer, has led pioneering work on how metal-binding proteins impact neurodegenerative disorders, including Alzheimer’s and Parkinson’s diseases. Her most recent study, published in Advanced Science, suggests a new way of understanding how amyloids may harm cells and consume the brain’s energy molecule, ATP.

According to Alzheimer’s Disease International, neurodegenerative disease cases could reach around 78 million by 2030 and 139 million by 2050. Wittung-Stafshede’s father died of dementia several years ago.

“This is close to my heart,” Wittung-Stafshede added in the news release. “Neurodegenerative diseases such as dementia, Alzheimer’s and Parkinson’s are on the rise as people live longer, and age is the largest risk factor. It affects everyone.”