From advanced computation to robots, Rice University, the University of Houston, and Houston Methodist are all working on using technology for medical innovation. Graphic via Getty Images

Research, perhaps now more than ever, is crucial to expanding and growing innovation in Houston — and it's happening across the city right under our noses.

In InnovationMap's latest roundup of research news, three Houston institutions are working on brain-related health care solutions thanks to technologies.

University of Houston research team focused on brain injury treatment through computation

Badri Roysam and his team at the University of Houston are working with the National Institute of Health to develop tools to treat concussions and brain injuries. Photo via uh.edu

A University of Houston researcher is tapping into technology to better treat brain injuries and conditions that scientists have not yet figured out treatment for. Badri Roysam, the current chair of electrical and computer engineering at UH and a Hugh Roy and Lillie Cranz Cullen University Professor, and his team have created a new computational image analysis methods based on deep neural networks.

"We are interested in mapping and profiling unhealthy and drug-treated brain tissue in unprecedented detail to reveal multiple biological processes at once - in context," Roysam says in a UH press release about his latest paper published in Nature Communications. "This requires the ability to record high-resolution images of brain tissue covering a comprehensive panel of molecular biomarkers, over a large spatial extent, e.g., whole-brain slices, and automated ability to generate quantitative readouts of biomarker expression for all cells."

Roysam's system, which was developed at the the National Institute of Neurological Disorders and Stroke, analyzes the images on UH's supercomputer automatically and can reveal multiple processes at once – the brain injury, effects of the drug being tested and the potential side effects of the drug, per the release.

"Compared to existing screening techniques, using iterative immunostaining and computational analysis, our methods are more flexible, scalable and efficient, enabling multiplex imaging and computational analysis of up to 10 – 100 different biomarkers of interest at the same time using direct or indirect IHC immunostaining protocols," says Roysam in the release.

The open-source toolkit, which was developed thanks to a $3.19 million grant from the National Institute of Health, is also adaptable to other tissues.

"We are efficiently overcoming the fluorescence signal limitations and achieving highly enriched and high-quality source imagery for reliable automated scoring at scale," says Roysam. "Our goal is to accelerate system-level studies of normal and pathological brains, and pre-clinical drug studies by enabling targeted and off-target drug effects to be profiled simultaneously, in context, at the cellular scale."

Houston Methodist and Rice University launch new collaboration to use robotics for clinical solutions

Rice University's Behnaam Aazhang and Marcia O'Malley are two of the people at the helm of the new center along with Houston Methodist's Dr. Gavin Britz. Photos via Rice.edu

Rice University and Houston Methodist have teamed up to create a new partnership and to launch the Center for Translational Neural Prosthetics and Interfaces in order to bring together scientists, clinicians, engineers, and surgeons to solve clinical problems with neurorobotics.

"This will be an accelerator for discovery," says the new center's co-director, Dr. Gavin Britz, chair of the Houston Methodist Department of Neurosurgery, in a news release. "This center will be a human laboratory where all of us — neurosurgeons, neuroengineers, neurobiologists — can work together to solve biomedical problems in the brain and spinal cord. And it's a collaboration that can finally offer some hope and options for the millions of people worldwide who suffer from brain diseases and injuries."

The center will have representatives from both Rice and Houston Methodist and also plans to hire three additional engineers who will have joint appointments at Houston Methodist and Rice.

"The Rice Neuroengineering Initiative was formed with this type of partnership in mind," says center co-director Behnaam Aazhang, Rice's J.S. Abercrombie Professor of Electrical and Computer Engineering, who also directs the neuroengineering initiative. "Several core members, myself included, have existing collaborations with our colleagues at Houston Methodist in the area of neural prosthetics. The creation of the Center for Translational Neural Prosthetics and Interfaces is an exciting development toward achieving our common goals."

The team will have a presence on the Rice campus with 25,000 square feet of space in the Rice Neuroengineering Initiative laboratories and experimental spaces in the university's BioScience Research Collaborative. The space at Houston Methodist is still being developed.

"This partnership is a perfect blend of talent," says Rice's Marcia O'Malley, a core member of both the new center and university initiative. "We will be able to design studies to test the efficacy of inventions and therapies and rely on patients and volunteers who want to help us test our ideas. The possibilities are limitless."

Three UH researchers are revolutionizing the way we think the brain works. Andriy Onufriyenko/Getty Images

3 ways University of Houston researchers are innovating brain treatments and technologies

Brain teasers

While a lot of scientists and researchers have long been scratching their heads over complicated brain functionality challenges, these three University of Houston researchers have made crucial discoveries in their research.

From dissecting the immediate moment a memory is made or incorporating technology to solve mobility problems or concussion research, here are the three brain innovations and findings these UH professors have developed.

Brains on the move

Professor of biomedical engineering Joe Francis is reporting work that represents a significant step forward for prosthetics that perform more naturally. Photo courtesy of UH Research

Brain prosthetics have come a long way in the past few years, but a UH professor and his team have discovered a key feature of a brain-computer interface that allows for an advancement in the technology.

Joe Francis,a UH professor of biomedical engineering, reported in eNeuro that the BCI device is able to learn on its own when its user is expecting a reward through translating interactions "between single-neuron activities and the information flowing to these neurons, called the local field potential," according to a UH news release. This is all happening without the machine being specifically programmed for this capability.

"This will help prosthetics work the way the user wants them to," says Francis in the release. "The BCI quickly interprets what you're going to do and what you expect as far as whether the outcome will be good or bad."

Using implanted electrodes, Francis tracked the effects of reward on the brain's motor cortex activity.

"We assume intention is in there, and we decode that information by an algorithm and have it control either a computer cursor, for example, or a robotic arm," says Francis in the release.

A BCI device would be used for patients with various brain conditions that, as a result of their circumstances, don't have full motor functionality.

"This is important because we are going to have to extract this information and brain activity out of people who cannot actually move, so this is our way of showing we can still get the information even if there is no movement," says Francis.

Demystifying the memory making moments

Margaret Cheung, a UH professor, is looking into what happens when a memory is formed in the brain. Photo courtesy of UH Research

What happens when a brain forms a new memory? Margaret Cheung, a UH professor in the school of physics, computer science, and chemistry, is trying to find out.

Cheung is analyzing the exact moment a neuron forms a memory in our brains and says this research will open doors to enhancing memory making in the future.

"The 2000 Nobel laureate Eric Kandel said that human consciousness will eventually be explained in terms of molecular signaling pathways. I want to see how far we can go to understand the signals," says Cheung in a release.

Cheung is looking at calcium in particular, since this element impacts most of cellular life.

"How the information is transmitted from the calcium to the calmodulin and how CaM uses that information to activate decisions is what we are exploring," says Cheung in the release. "This interaction explains the mechanism of human cognition."

Her work is being funded by a $1.1 million grant from the National Institute of General Medical Science from the National Institutes of Health, and she's venturing into uncharted territories with her calcium signaling studies. Previous research hasn't been precise or conclusive enough for real-world application.

"In this work we seek to understand the dynamics between calcium signaling and the resulting encoded CaM states using a multiphysics approach," says Cheung. "Our expected outcome will advance modeling of the space-time distribution of general secondary messengers and increase the predictive power of biophysical simulations."

New tech for brain damage treatment

Badri Roysam, chair of the University of Houston Department of Electrical and Computer Engineering, is leading the project that uncovering new details surrounding concussions. Photo courtesy of UH Research

Concussions and brain damage have both had their fair shares of question marks, but this UH faculty member is tapping into new technologies to lift the curtain a little.

Badri Roysam, the chair of the University of Houston Department of Electrical and Computer Engineering, is heading up a multimillion-dollar project that includes "super microscopes" and the UH supercomputer at the Hewlett Packard Enterprise Data Science Institute. Roysam calls the $3.19 million project a marriage between these two devices.

"By allowing us to see the effects of the injury, treatments and the body's own healing processes at once, the combination offers unprecedented potential to accelerate investigation and development of next-generation treatments for brain pathologies," says Roysam in a release.

The project, which is funded by the National Institute of Neurological Disorders and Stroke (NINDS), is lead by Roysam and co-principal investigator John Redell, assistant professor at UTHealth McGovern Medical School. The team also includes NINDS scientist Dragan Maric and UH professors Hien Van Nguyen and Saurabh Prasad.

Concussions, which affect millions of people, have long been mysterious to scientists due to technological limitations that hinder treatment options and opportunities.

"We can now go in with eyes wide open whereas before we had only a very incomplete view with insufficient detail," says Roysam in the release. "The combinations of proteins we can now see are very informative. For each cell, they tell us what kind of brain cell it is, and what is going on with that cell."

The technology and research can be extended to other brain conditions, such as strokes, brain cancer, and more.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston climbs to top 10 spot on North American tech hubs index

tech report

Houston already is the Energy Capital of the World, and now it’s gaining ground as a tech hub.

On Site Selection magazine’s 2026 North American Tech Hub Index, Houston jumped to No. 10 from No. 16 last year. The index relies on data from Site Selection as well as data from CBRE, CompTIA and TeleGeography to rank the continent’s tech hotspots. The index incorporates factors such as internet connectivity, tech talent and facility projects for tech companies.

In 2023, the Greater Houston Partnership noted the region had “begun to receive its due as a prominent emerging tech hub, joining the likes of San Francisco and Austin as a major player in the sector, and as a center of activity for the next generation of innovators and entrepreneurs.”

The Houston-area tech sector employs more than 230,000 people, according to the partnership, and generates an economic impact of $21.2 billion.

Elsewhere in Texas, two other metros fared well on the Site Selection index:

  • Dallas-Fort Worth nabbed the No. 1 spot, up from No. 2 last year.
  • Austin rose from No. 8 last year to No. 7 this year.

San Antonio slid from No. 18 in 2025 to No. 22 in 2026, however.

Two economic development officials in DFW chimed in about the region’s No. 1 ranking on the index:

  • “This ranking affirms what we’ve long seen on the ground — Dallas-Fort Worth is a top-tier technology and innovation center,” said Duane Dankesreiter, senior vice president of research and innovation at the Dallas Regional Chamber. “Our region’s scale, talent base, and diverse strengths … continue to set DFW apart as a national leader.”
  • “Being recognized as the top North American tech hub underscores the strength of the entire Dallas-Fort Worth region as a center of innovation and next-generation technology,” said Robert Allen, president and CEO of the Fort Worth Economic Development Partnership.

While not directly addressing Austin’s Site Selection ranking, Thom Singer, CEO of the Austin Technology Council, recently pondered whether Silicon Hills will grow “into the kind of community that other cities study for the right reasons.”

“Austin tech is not a club. It is not a scene. It is not a hashtag, a happy hour, or any one place or person,” Singer wrote on the council’s blog. “Austin tech is an economic engine and a global brand, built by thousands of people who decided to take a risk, build something, hire others, and be part of a community that is still young enough to reinvent itself.”

South of Austin, Port San Antonio is driving much of that region’s tech activity. Occupied by more than 80 employers, the 1,900-acre tech and innovation campus was home to 18,400 workers in 2024 and created a local economic impact of $7.9 billion, according to a study by Zenith Economics.

“Port San Antonio is a prime example of how innovation and infrastructure come together to strengthen [Texas’] economy, support thousands of good jobs, and keep Texas competitive on the global stage,” said Kelly Hancock, the acting state comptroller.

14 Houston startups starting 2026 with fresh funding

cha-ching

Houston startups closed out the last half of 2025 with major funding news.

Here are 14 Houston companies—from groundbreaking energy leaders to growing space startups—that secured funding in the last six months of the year, according to reporting by InnovationMap and our sister site, EnergyCapitalHTX.com.

Did we miss a funding round? Let us know by emailing innoeditor@innovationmap.com.

Fervo Energy

Fervo Energy has closed an oversubscribed Series E. Photo via Fervo Energy

Houston-based geothermal energy company Fervo Energy closed an oversubscribed $462 million series E funding round, led by new investor B Capital, in December.

The company also secured $205.6 million from three sources in June.

“Fervo is setting the pace for the next era of clean, affordable, and reliable power in the U.S.,” Jeff Johnson, general partner at B Capital, said in a news release.

The funding will support the continued buildout of Fervo’s Utah-based Cape Station development, which is slated to start delivering 100 MW of clean power to the grid beginning in 2026. Cape Station is expected to be the world's largest next-generation geothermal development, according to Fervo. The development of several other projects will also be included in the new round of funding. Continue reading.

Square Robot

Houston robotics co. unveils new robot that can handle extreme temperatures

Square Robot's technology eliminates the need for humans to enter dangerous and toxic environments. Photo courtesy of Square Robot

Houston- and Boston-based Square Robot Inc. announced a partnership with downstream and midstream energy giant Marathon Petroleum Corp. (NYSE: MPC) last month.

The partnership came with an undisclosed amount of funding from Marathon, which Square Robot says will help "shape the design and development" of its submersible robotics platform and scale its fleet for nationwide tank inspections. Continue reading.

Eclipse Energy

Eclipse Energy and Weatherford International are expected to launch joint projects early this year. Photo courtesy of Eclipse Energy.

Oil and gas giant Weatherford International (NASDAQ: WFRD) made a capital investment for an undisclosed amount in Eclipse Energy in December as part of a collaborative partnership aimed at scaling and commercializing Eclipse's clean fuel technology.

According to a release, joint projects from the two Houston-based companies are expected to launch as soon as this month. The partnership aims to leverage Weatherford's global operations with Eclipse Energy's pioneering subsurface biotechnology that converts end-of-life oil fields into low-cost, sustainable hydrogen sources. Continue reading.

Venus Aerospace 

Lockheed Martin Ventures says it's committed to helping Houston-based Venus Aerospace scale its technology. Photo courtesy Venus Aerospace

Venus Aerospace, a Houston-based startup specializing in next-generation rocket engine propulsion, has received funding from Lockheed Martin Ventures, the investment arm of aerospace and defense contractor Lockheed Martin, for an undisclosed amount, the company announced in November. The product lineup at Lockheed Martin includes rockets.

The investment follows Venus’ successful high-thrust test flight of its rotating detonation rocket engine (RDRE) in May. Venus says it’s the only company in the world that makes a flight-proven, high-thrust RDRE with a “clear path to scaled production.”

Venus says the Lockheed Martin Ventures investment reflects the potential of Venus’ dual-use technology for defense and commercial uses. Continue reading.

Koda Health

Tatiana Fofanova and Dr. Desh Mohan, founders of Koda Health, which recently closed a $7 million series A. Photo courtesy Koda Health.

Houston-based digital advance care planning company Koda Health closed an oversubscribed $7 million series A funding round in October.

The round, led by Evidenced, with participation from Mudita Venture Partners, Techstars and Texas Medical Center, will allow the company to scale operations and expand engineering, clinical strategy and customer success, according to a news release.

The company shared that the series A "marks a pivotal moment," as it has secured investments from influential leaders in the healthcare and venture capital space. Continue reading.

Hertha Metals

U.S. Rep. Morgan Luttrell, a Magnolia Republican, and Hertha Metals founder and CEO Laureen Meroueh toured Hertha’s Conroe plant in August. Photo courtesy Hertha Metals/Business Wire.

Conroe-based Hertha Metals, a producer of substantial steel, hauled in more than $17 million in venture capital from Khosla Ventures, Breakthrough Energy Fellows, Pear VC, Clean Energy Ventures and other investors.

The money was put toward the construction and the launch of its 1-metric-ton-per-day pilot plant in Conroe, where its breakthrough in steelmaking has been undergoing tests. The company uses a single-step process that it claims is cheaper, more energy-efficient and equally as scalable as conventional steelmaking methods. The plant is fueled by natural gas or hydrogen.

The company, founded in 2022, plans to break ground early this year on a new plant. The facility will be able to produce more than 9,000 metric tons of steel per year. Continue reading.

Helix Earth Technologies, Resilitix Intelligence and Fluxworks Inc.

Helix Earth's technology is estimated to save up to half of the net energy used in commercial air conditioning, reducing both emissions and costs for operators. Photo via Getty Images

Houston-based Helix Earth Technologies, Resilitix Intelligence and Fluxworks Inc. each secured $1.2 million in federal funding through the Small Business Innovation Research (SBIR) Phase II grant program this fall.

The three grants from the National Scienve foundation officially rolled out in early September 2025 and are expected to run through August 2027, according to the NSF. The SBIR Phase II grants support in-depth research and development of ideas that showed potential for commercialization after receiving Phase I grants from government agencies.

However, congressional authority for the program, often called "America's seed fund," expired on Sept. 30, 2025, and has stalled since the recent government shutdown. Continue reading.

Solidec Inc. (pre-seed)

7 innovative startups that are leading the energy transition in Houston

Houston-based Solidec was founded around innovations developed by Rice University associate professor Haotian Wang (far left). Photo courtesy Greentown Labs.

Solidec, a Houston startup that specializes in manufacturing “clean” chemicals, raised more than $2 million in pre-seed funding in August.

Houston-based New Climate Ventures led the oversubscribed pre-seed round, with participation from Plug and Play Ventures, Ecosphere Ventures, the Collaborative Fund, Safar Partners, Echo River Capital and Semilla Climate Capital, among other investors. Continue reading.

Molecule

Sameer Soleja is the founder and CEO of Molecule, which just closed its series B round. Photo courtesy of Molecule Software.

Houston-based energy trading risk management (ETRM) software company Molecule completed a successful series B round for an undisclosed amount, according to a July 16 release from the company.

The raise was led by Sundance Growth, a California-based software growth equity firm. Sameer Soleja, founder and CEO of Molecule, said in the release that the funding will allow the company to "double down on product innovation, grow our team, and reach even more markets." Continue reading.

Rarefied Studios, Solidec Inc. and Affekta

Houston startups were named among the nearly 300 recipients that received a portion of $44.85 million from NASA to develop space technology this fall. Photo via NASA/Ben Smegelsky

Houston-based Rarefied Studios, Solidec Inc. and Affekta were granted awards from NASA this summer to develop new technologies for the space agency.

The companies are among nearly 300 recipients that received a total agency investment of $44.85 million through the Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) Phase I grant programs, according to NASA.

Each selected company received $150,000 and, based on their progress, will be eligible to submit proposals for up to $850,000 in Phase II funding to develop prototypes. The SBIR program lasts for six months and contracts small businesses. Continue reading.

Intuitive Machines 

Intuitive Machines expects to begin manufacturing and flight integration on its orbital transfer vehicle as soon as 2026. Photo courtesy Intuitive Machines.

Houston-based Intuitive Machines secured a $9.8 million Phase II government contract for its orbital transfer vehicle in July.

The contract was expected to push the project through its Critical Design Review phase, which is the final engineering milestone before manufacturing can begin, according to a news release from the company. Intuitive Machines reported that it expected to begin manufacturing and flight integration for its orbital transfer vehicle as soon as this year, once the design review is completed.

The non-NASA contract is for an undisclosed government customer, which Intuitive Machines says reinforces its "strategic move to diversify its customer base and deliver orbital capabilities that span commercial, civil, and national security space operations." Continue reading.

NRG inks new virtual power plant partnership to meet surging energy demands

Powering Up

Houston-based NRG Energy recently announced a new long-term partnership with San Francisco-based Sunrun that aims to meet Texas’ surging energy demands and accelerate the adoption of home battery storage in Texas. The partnership also aligns with NRG’s goal of developing a 1-gigawatt virtual power plant by connecting thousands of decentralized energy sources by 2035.

Through the partnership, the companies will offer Texas residents home energy solutions that pair Sunrun’s solar-plus-storage systems with optimized rate plans and smart battery programming through Reliant, NRG’s retail electricity provider. As new customers enroll, their stored energy can be aggregated and dispatched to the ERCOT grid, according to a news release.

Additionally, Sunrun and NRG will work to create customer plans that aggregate and dispatch distributed power and provide electricity to Texas’ grid during peak periods.

“Texas is growing fast, and our electricity supply must keep pace,” Brad Bentley, executive vice president and president of NRG Consumer, said in the release. “By teaming up with Sunrun, we’re unlocking a new source of dispatchable, flexible energy while giving customers the opportunity to unlock value from their homes and contribute to a more resilient grid

Participating Reliant customers will be paid for sharing their stored solar energy through the partnership. Sunrun will be compensated for aggregating the stored capacity.

“This partnership demonstrates the scale and strength of Sunrun’s storage and solar distributed power plant assets,” Sunrun CEO Mary Powell added in the release. “We are delivering critical energy infrastructure that gives Texas families affordable, resilient power and builds a reliable, flexible power plant for the grid.”

In December, Reliant also teamed up with San Francisco tech company GoodLeap to bolster residential battery participation and accelerate the growth of NRG’s virtual power plant network in Texas.

In 2024, NRG partnered with California-based Renew Home to distribute hundreds of thousands of VPP-enabled smart thermostats by 2035 to help households manage and lower their energy costs. At the time, the company reported that its 1-gigawatt VPP would be able to provide energy to 200,000 homes during peak demand.

---

This article originally appeared on EnergyCapitalHTX.com.