Pothik Chatterjee was named executive director of Rice University's and Houston Methodist's Digital Health Institute, effective May 1. Photo courtesy Rice University.

Though our existences have become deeply entangled with technology, our health has been slower to catch up. The creation late last year of the Digital Health Institute was a major step into the future for both Rice University and Houston Methodist, for whom the institute is a joint venture.

The latest news for the Digital Health Institute is the appointment of Pothik Chatterjee to the role of executive director.

“The Digital Health Institute’s collaborative model is uniquely powerful,” Chatterjee told Rice University’s office of media relations. “By bringing together clinicians, engineers and entrepreneurs, we’re building an ecosystem designed to transform how care is delivered and experienced.”

Chatterjee’s role is to help grow the collaboration between the institutions, but the Digital Health Institute already boasts more than 20 active projects, each of which pairs Rice faculty and Houston Methodist clinicians.

“Research is great, but what we really want at the Digital Health Institute is to translate those research findings into products and services that can be used at the patient's bedside,” Chatterjee explained to InnovationMap.

Once the research is in place, it’s up to Chatterjee to find commercial opportunities within the research portfolio. Those include everything from hospital-grade medical imaging wearables to the creation of digital twins for patients to help better treat them.

“As we move from vision to execution, Pothik’s expertise will be essential in helping us strengthen the institutional alignment needed to deliver at scale,” Dr. Khurram Nasir, Houston Methodist’s William A. Zoghbi Centennial Chair in Cardiovascular Medicine and division chief of cardiovascular prevention and wellness, told Rice. “From my vantage point of a health system, the real value lies not just in innovation, but in implementation.”

Nasir’s co-founder is Ashutosh Sabharwal, Rice’s Ernest Dell Butcher Professor of Engineering and professor of electrical and computer engineering.

“The Digital Health Institute is a key step toward advancing health and health care for the benefit of humanity,” Sabharwal said. “We’re thrilled to welcome Pothik to our growing team. His background in health care innovation, research administration and venture investing will be instrumental in translating cutting-edge research into impactful digital health solutions. From leading innovation strategy and forging strong partnerships to driving fundraising and grant development, his leadership will help shape the institute’s long-term success.”

Though Chatterjee has previously worked around the country, including in Boston and Baltimore, he says he believes Houston is uniquely positioned to thrive in the digital health space.

“Houston is the best place to do it, because we have Rice and Houston Methodist,” he told InnovationMap. “[People] want to help keep that innovation in Houston, not just send it off to Silicon Valley or New York or Boston. There seems to be a lot of appetite from the philanthropic community to have homegrown Houston digital health innovation.”

Rice University and Houston Methodist have partnered to create the Digital Health Institute, combining advanced technology, artificial intelligence, and interdisciplinary expertise to transform health care. Photos courtesy

Rice University, Houston Methodist launch new institute to revolutionize health care through AI, innovation

collaboration station

Rice University and Houston Methodist have established through a multi-year joint effort the Digital Health Institute, which aims to transform healthcare through advanced technology and the collaborative expertises of the university and hospital.

Rice’s leadership in engineering, digital health and artificial intelligence will combine with Houston Methodist’s academic medicine and research infrastructure.

“This partnership embodies Rice’s bold vision to lead at the forefront of innovation in health and responsible AI,” Rice President Reginald DesRoches says in a news release. “By combining our strengths with Houston Methodist, we are creating a transformative platform to address critical challenges in healthcare with solutions that are ethical, accessible and impactful. This initiative exemplifies our commitment to driving interdisciplinary collaboration and advancing global health for the benefit of humanity.”

Leading the initiative will be Rice’s Ashutosh Sabharwal, the Ernest Dell Butcher Professor of Engineering and professor of electrical and computer engineering, and Houston Methodist’s Dr. Khurram Nasir, the Centennial Chair in Cardiovascular Medicine, and Dr. William Zoghbi, division chief of cardiovascular prevention and wellness. Rice and Houston Methodist have worked previously with the Center for Neural Systems Restoration that opened earlier this year and the Center for Human Performance that was established in 2022.

The Digital Health Institute allows for both institutions to share data, and resources that focus on key areas like the early detection through AI algorithms for early diagnosis of cancer, infections, cardiovascular diseases and other conditions, predictive analytics that utilize real-time monitoring that can predict and prevent events such as strokes and heart failure, and the development of novel sensors, wearables and ingestibles to innovate new remote monitoring and care pathways.

The Digital Health Institute will also work to utilize more personalized medicine efforts, developments of new novel and assistive technologies, expansion of telemedicine, and proactive self-care management through AI-driven patient self-management.

“This partnership between our institutions marks a bold new chapter in driving meaningful innovation at the intersection of healthcare and technology through solutions that are both visionary and practical,” Dr. Marc Boom, president and CEO of Houston Methodist, adds. “Our long-standing relationship with Rice University has produced impactful collaborations, but this initiative is by far the most transformative endeavor in our shared commitment of leading medicine through innovation.”

Rice President Reginald DesRoches and Houston Methodist CEO Marc Boom announced the new partnership at the Ion. Photo courtesy of Rice

Rice University, Baylor College of Medicine, and Houston Methodist have awarded a total of $50,000 to two projects. Photo by Brandon Martin/Rice University

Houston organizations issue seed grants to fuel AI-driven equity, digital health innovation

fresh funding

Three Houston organizations have doled out seed grants for research initiatives focused on digital health and equity.

Rice University's Educational and Research Initiatives for Collaborative Health (ENRICH) office — in partnership with Baylor College of Medicine and the Houston Methodist Academic Institute — has awarded a total of $50,000 to two projects. BCM and Rice announced three other grants earlier this year.

The seed grants were deployed earlier this year at the Health Equity Workshop from Rice’s Digital Health Initiative and chaired by Momona Yamagami, an assistant professor of electrical and computer engineering at Rice.

“To achieve equitable health outcomes, a comprehensive approach is essential — one that spans all phases of digital health from technology design and development to implementation, dissemination and long-term sustainability,” says Ashutosh Sabharwal, who leads the Digital Health Initiative and serves as Rice’s Ernest Dell Butcher Professor of Engineering and a professor of electrical and computer engineering, in a news release.

Both the workshop and the grant opportunity help to allow collaboration between researchers and health care providers working on health equity research across disciplines.

“This seed grant not only fosters interdisciplinary collaborations between Rice University and the Texas Medical Center but also enables us to leverage our combined knowledge to enhance innovations in health equity and digital health, ultimately creating impactful solutions for improving patient care,” adds Sharon Pepper, executive director of ENRICH.

The two projects receiving funding, according to Rice's release, include:

  • Evaluating Equity and Community-Level Vulnerabilities in the Use of Generative Artificial Intelligence-based Symptom Checkers for Self-diagnosis — Using AI-based symptom checkers, the project aims to mitigate vulnerabilities for patients using and improve data precision specifically when it comes to patients' social and cultural differences.
  • Al-Driven ECG Analysis for Equitable Cardiovascular Risk Assessment and Prevention: Leveraging Transformer Models and Big Data to Reduce Health Disparities — Also backed by AI, this project will harness the untapped potential of electrocardiogram data for improving cardiovascular risk assessment, hopefully reducing cost and invasiveness of the standard practice of care.
The project will focus on testing 5G networks for software-centric architectures. Photo via Getty Images

Rice lands federal funding for new 5G testing framework

money moves

A team of Rice University engineers has secured a $1.9 million grant from the U.S. Department of Commerce’s National Telecommunications and Information Administration to develop a new way to test 5G networks.

The project will focus on testing 5G networks for software-centric architectures, according to a statement from Rice. The funds come from the NTIA's most recent round of grants, totaling about $80 million, as part of the $1.5 billion Public Wireless Supply Chain Innovation Fund. Other awards went to Virginia Tech, Northeastern University, DISH Wireless, and more.

The project at Rice will be led by Rahman Doost-Mohammady, an assistant research professor of electrical and computer engineering; and Ashutosh Sabharwal, the Ernest Dell Butcher Professor of Engineering and chair of the Department of Electrical and Computer Engineering. Santiago Segarra, assistant professor of electrical and computer engineering and an expert in machine learning for wireless network design, is also a co-principal investigator on this project.

"Current testing methodologies for wireless products have predominantly focused on the communication dimension, evaluating aspects such as load testing and channel emulation,” said Doost-Mohammady said in a statement. “But with the escalating trend toward software-based wireless products, it’s imperative that we take a more holistic approach to testing."

The new framework will be used to "assess the stability, interoperability, energy efficiency and communication performance of software-based machine learning-enabled 5G radio access networks (RANs)," according to Rice, known as ETHOS.

Once created, the team of researchers will use the framework for extensive testing using novel machine learning algorithms for 5G RAN with California-based NVIDIA's Aerial Research Cloud (ARC) platform. The team also plans to partner with other industry contacts in the future, according to Rice.

“The broader impacts of this project are far-reaching, with the potential to revolutionize software-based and machine learning-enabled wireless product testing by making it more comprehensive and responsive to the complexities of real-world network environments,” Sabharwal said in the statement. “By providing the industry with advanced tools to evaluate and ensure the stability, energy efficiency and throughput of their products, our research is poised to contribute to the successful deployment of 5G and beyond wireless networks.”

Late last year, the Houston location of Greentown Labs also landed funds from the Department of Commerce. The climatetech startup incubator was named to of the Economic Development Administration's 10th cohort of its Build to Scale program and will receive $400,000 with a $400,000 local match confirmed.

Houston-based nonprofit accelerator, BioWell, also received funding from the Build to Scale program.
The five scientists represent five different academic institutions in Houston. Photo via Getty Images

5 Houston inventors named fellows of a prestigious international program

top researchers

The National Academy of Inventors has recognized 175 scientists from across the world as NAI Fellows — and five of those inventors are based at Houston institutions.

The program honors academic inventors who, according to NAI, "have demonstrated a spirit of innovation in creating or facilitating outstanding inventions that have made a tangible impact on quality of life, economic development and the welfare of society."

The five Houston inventors join the ranks of a group of individuals who have generated over 13,000 licensed technologies and companies, and created more than 19 million jobs, according to the announcement.

These are the scientists from Houston organizations:

  • Ananth Annapragada of Baylor College of Medicine is professor of radiology and obstetrics and gynecology, vice chief of research and director of basic research at Baylor College of Medicine and Texas Children's Hospital as well as a member of the Dan L Duncan Comprehensive Cancer Center.
  • Ronald Biediger of the Texas Heart Institute is associate director of chemistry, Wafic Said Molecular Cardiology Research Laboratories and leading a group of chemists developing small molecule integrin antagonists and agonists for use as therapies, or as adjuncts to cell based therapies, for heart, lung and vascular disease
  • Mark Clarke of the University of Houston is associate provost for faculty development and faculty affairs at the University of Houston.
  • Ashutosh Sabharwal of Rice University is professor and Ph.D of electrical engineering and was named Fellow of the Institute of Electrical and Electronics Engineers in 2014 for contributions to the theory and experimentation of wireless systems and networks.
  • Jia Zhou of The University of Texas Medical Branch is professor in the Department Pharmacology and Toxicology focusing on drug discovery of bioactive molecules to probe biological systems or act as potential therapeutic agents in neuroscience, cancer/inflammation, infectious diseases, and other human conditions.

The new class of inventors will be inducted on June 8 at the 10th Annual Meeting of the National Academy of Inventors in Tampa, Florida.

These scientists have already established dozens of patents between the five of them across fields and industries. Clarke specifically holds 13 U.S. patents, seven NASA technology innovation awards, and has founded two life science startup companies to commercialize his technologies, according to a news release from UH.

"Most faculty inventors, including myself, do not begin their research careers focused on creating or commercializing new technologies, nor do they usually know where to start when presented with such an opportunity," Clarke says in the release. "Helping faculty members and students transition fundamental discoveries into commercially valuable technologies and products is not only a key part of our mission as a Tier One research university, it is critical to our region's economic prosperity and ensuring that the U.S. remains competitive in an innovation-driven global economy."

From BCM, Annapragada holds 15 patents in the United States and close to 100 worldwide. The majority of his patents are in next generation imaging technologies, CT vascular imaging, and MR molecular imaging, according to a BCM release, and Annapragada is the founder of two active startup companies — Alzeca Inc. and Sensulin LLC.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Nominations are now open for the 2025 Houston Innovation Awards

Calling All Innovators

Calling all Houston innovators: The Houston Innovation Awards return this fall to celebrate the best and brightest in the Houston innovation ecosystem right now.

Presented by InnovationMap, the fifth annual Houston Innovation Awards will take place November 5 at TMC Helix Park.

The awards program will honor the top startups and innovators in Houston across 10 categories, and we're asking you to nominate the most deserving Houston innovators and innovative companies today.

This year's categories are:

  • Minority-founded Business, honoring an innovative startup founded or co-founded by BIPOC or LGBTQ+ representation.
  • Female-founded Business, honoring an innovative startup founded or co-founded by a woman.
  • Energy Transition Business, honoring an innovative startup providing a solution within renewables, climatetech, clean energy, alternative materials, circular economy, and beyond.
  • Health Tech Business, honoring an innovative startup within the health and medical technology sectors.
  • Deep Tech Business, honoring an innovative startup providing technology solutions based on substantial scientific or engineering challenges, including those in the AI, robotics, and space sectors.
  • Startup of the Year (People's Choice), honoring a startup celebrating a recent milestone or success. The winner will be selected by the community via an interactive voting experience.
  • Scaleup of the Year, honoring an innovative later-stage startup that's recently reached a significant milestone in company growth.
  • Incubator/Accelerator of the Year, honoring a local incubator or accelerator that is championing and fueling the growth of Houston startups.
  • Mentor of the Year, honoring an individual who dedicates their time and expertise to guide and support budding entrepreneurs.
  • Trailblazer, honoring an innovator who's made a lasting impact on the Houston innovation community.

Nominations may be made on behalf of yourself, your organization, and other leaders in the local innovation scene. The nomination period closes on August 31, so don't delay — nominate today at this link, or fill out the embedded form below.

Our panel of esteemed judges will review the nominations, and determine the finalists and winners. Finalists will be unveiled on September 30, and the 2025 Houston Innovation Awards winners will be announced live at our event on November 5.

Tickets will go on sale this fall. Stay tuned for that announcement, as well as more fanfare leading up to the 2025 Houston Innovation Awards.

Nominate now:

Interested in Innovation Awards sponsorship opportunities? Please contact sales@innovationmap.com.

MD Anderson launches $10M collaboration to advance personalized cancer treatment tech

fighting cancer

The University of Texas MD Anderson Cancer Center and Japan’s TOPPAN Holdings Inc. have announced a strategic collaboration to co-develop TOPPAN Holdings’ 3D cell culture, or organoid, technology known as invivoid.

The technology will be used as a tool for personalized cancer treatments and drug screening efforts, according to a release from MD Anderson. TOPPAN has committed $10 million over five years to advance the joint research activities.

“The strategic alliance with MD Anderson paves a promising path toward personalized cancer medicine," Hiroshi Asada, head of the Business Innovation Center at TOPPAN Holdings, said in a news release.

Invivoid is capable of establishing organoid models directly from patient biopsies or other tissues in a way that is faster and more efficient. Researchers may be able to test a variety of potential treatments in the laboratory to understand which approach may work best for the patient, if validated clinically.

“Organoids allow us to model the three-dimensional complexity of human cancers in the lab, thus allowing us to engineer a powerful translational engine—one that could not only predict how patients will respond to therapy before treatment begins but also could help to reimagine how we discover and validate next-generation therapies," Dr. Donna Hansel, division head of pathology and laboratory medicine at MD Anderson, added in the news release. “Through this collaboration, we hope to make meaningful progress in modeling cancer biology for therapeutic innovation.”

The collaboration will build upon preclinical research previously conducted by MD Anderson and TOPPAN. The organizations will work collaboratively to obtain College of American Pathologists (CAP) and Clinical Laboratory Improvement Amendments (CLIA) certifications for the technology, which demonstrate a commitment to high-quality patient care. Once the certifications are obtained, they plan to conduct observational clinical studies and then prospective clinical studies.

“We believe our proprietary invivoid 3D cell culture technology, by enabling the rapid establishment of organoid models directly from patient biopsies, has strong potential to help identify more effective treatment options and reduce the likelihood of unnecessary therapies,” Asada added in the release. “Through collaboration on CAP/CLIA certification and clinical validation, we aim to bring this innovation closer to real-world patient care and contribute meaningfully to the advancement of cancer medicine."