The National Academy of Inventors has honored four academic inventors in Houston with their annual professional distinction. Photos courtesy

Four professors from the University of Houston and University of Texas MD Anderson Cancer Center have been admitted as fellows to the National Academy of Inventors.

From UH, Vincent Donnelly, Moores professor of Chemical and Biomolecular Engineering, and Christine Ehlig-Economides, Hugh Roy and Lillie Cranz Cullen Distinguished university chair of Petroleum Engineering, received the Fellows honor, which is the highest professional distinction awarded to academic inventors.

UH now has 39 professors who are either Fellows or Senior Members of the NAI. Donnelly and Ehlig-Economides will be inducted as NAI fellows at the NAI 13th annual meeting on June 18 in Raleigh, North Carolina.

“The remarkable contributions of the two new NAI Fellows from the University of Houston have left a lasting imprint, earning them high esteem in their respective fields,” Ramanan Krishnamoorti, vice president for research and technology at UH, says in a statement. “Their work stands as a testament to the extraordinary impact inventors can have, reflecting a standard of excellence that truly sets them apart.”

Donnelly, who is considered a pioneer in plasma science with applications to microelectronics and nanotechnology, was elevated to Fellow for his research on complex plasma systems used in the making of microchips. Ehlig-Economides was elevated to NAI fellow for her vital research leading to innovative solutions in the energy and industrial fields. Ehlig-Economides was also the first woman in the United States to earn a doctorate degree in petroleum engineering.

Two other Houston instructors from the University of Texas MD Anderson Cancer Center will be inducted to the program in the new year. Jeffrey H. Siewerdsen, professor within the department of Imaging Physics and the Division of Diagnostic Imaging, and Anil Sood, professor and vice chair for Translational Research in the Departments of Gynecologic Oncology and Cancer Biology and co-director of the Center for RNA Interference and Non-Coding RNA.

Some other notable Texas honorees among the 2024 appointees include:

  • Mark Benden, Texas A&M University
  • Arumugam Manthiram, the University of Texas at Austin
  • Werner Kuhr, Texas Tech University
  • Balakrishna Haridas, Texas A&M University
  • P.Reddy, Texas Tech University Health Sciences Center

“This year’s class of NAI Fellows showcases the caliber of researchers that are found within the innovation ecosystem. Each of these individuals are making significant contributions to both science and society through their work,” Dr. Paul R. Sanberg, president of the NAI, says in the release. “This new class, in conjunction with our existing Fellows, are creating innovations that are driving crucial advancements across a variety of disciplines and are stimulating the global and national economy in immeasurable ways as they move these technologies from lab to marketplace.

UH also ranks 60th on the National Academy of Inventors’ list of the top 100 universities for utility patents granted last year in the U.S. In 2022, UH received 32 utility patents. The university explains that utility patents are among the world’s most valuable assets because they give inventors exclusive commercial rights for producing and using their technology.

The Texas Medical Center's Innovation Institute named 15 Texas companies to its new cancer-focused accelerator program. Photo courtesy of TMCx

TMC cancer therapeutic accelerator names inaugural cohort

cancer innovation

The Texas Medical Center named 15 groundbreaking researchers and companies to its inaugural class of the Accelerator for Cancer Therapeutics on Thursday. All hail from the Lone Star State.

The ACT program is the only accelerator focused on cancer treatment at the earliest stages of commercialization, thanks to a $5 million grant from the Cancer Prevention and Research Institute of Texas awarded to the TMC in the fall of 2019.

The nine-month program kicked-off at the end of January and will be run by TMC Innovation, according to a release from the TMC. It aims to provide the class with resources to help their oncology biotech projects reach new milestones, including even commercialization.

The inaugural cohort is made up of companies and researchers exploring immunotherapy, cell therapy, targeted therapy, cancer pain, and drug platforms. The group is split about evenly between companies and academic researchers. The group of Texans includes:

  • Raptamer Discovery Group
  • IDA Therapeutics
  • Elbrus Therapeutics
  • Parthenon Therapeutics
  • Lokesh Battula
  • Aumeta
  • Autoimmunity Biologic Solutions
  • Max Mamonkin
  • Qing Yi
  • Astero Alta
  • TEZCAT Laboratories
  • Anil Sood
  • Coactigon
  • Xiadong Cheng
  • IonTx

At the end of the nine months, the class will present an integrated strategic plan and at least one grant submission. They will also have the opportunity to pitch investors and corporations.

The class will also gain support in grant writing, chemistry, and funding opportunities, as well as mentorship.

"As the past year has shown, the pace of scientific discovery can be blistering," says Tom Luby, director of TMC Innovation. "At the same time, successfully translating research into effective therapies available to patients requires a mix of business, technical and regulatory skills that may not typically be available to researchers.

"By linking the participants with mentors who can both advance their scientific work and support the technical needs, we expect this first class of ACT participants will make a meaningful difference for cancer patients in Texas and beyond."

TMCx, which is also run by TMC Innovation, recently announced seven health tech companies that were selected to its 2021 class of its health tech accelerator.

Broader in scope that the ACT accelerator, the TMCx startups focus on an array of subject matters from heart health to artificial intelligence to extremity rehabilitation.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston climatetech startup raises $21.5M series A to grow robotics solution

seeing green

A Houston energy tech startup has raised a $21.5 million series a round of funding to support the advancement of its automated technology that converts field wastes into stable carbon.

Applied Carbon, previously known as Climate Robotics, announced that its fresh round of funding was led by TO VC, with participation from Congruent Ventures, Grantham Foundation, Microsoft Climate Innovation Fund, S2G Ventures, Overture.vc, Wireframe Ventures, Autodesk Foundation, Anglo American, Susquehanna Foundation, US Endowment for Forestry and Communities, TELUS Pollinator Fund for Good, and Elemental Excelerator.

The series A funding will support the deployment of its biochar machines across Texas, Oklahoma, Arkansas, and Louisiana.

"Multiple independent studies indicate that converting crop waste into biochar has the potential to remove gigatons of CO2 from the atmosphere each year, while creating trillions of dollars in value for the world's farmers," Jason Aramburu, co-founder and CEO of Applied Carbon, says in a news release. "However, there is no commercially available technology to convert these wastes at low cost.

"Applied Carbon's patented in-field biochar production system is the first solution that can convert crop waste into biochar at a scale and a cost that makes sense for broad acre farming," he continues.

Applied Carbon rebranded in June shortly after being named a top 20 finalist in XPRIZE's four-year, $100 million global Carbon Removal Competition. The company also was named a semi-finalist and awarded $50,000 from the Department of Energy's Carbon Dioxide Removal Purchase Pilot Prize program in May.

"Up to one-third of excess CO2 that has accumulated in the atmosphere since the start of human civilization has come from humans disturbing soil through agriculture," Joshua Phitoussi, co-founder and managing partner at TO VC, adds. "To reach our net-zero objectives, we need to put that carbon back where it belongs.

"Biochar is unique in its potential to do so at a permanence and price point that are conducive to mass-scale adoption of carbon dioxide removal solutions, while also leaving farmers and consumers better off thanks to better soil health and nutrition," he continues. "Thanks to its technology and business model, Applied Carbon is the only company that turns that potential into reality."

The company's robotic technology works in field, picking up agricultural crop residue following harvesting and converts it into biochar in a single pass. The benefits included increasing soil health, improving agronomic productivity, and reducing lime and fertilizer requirements, while also providing a carbon removal and storage solution.

"We've been looking at the biochar sector for over a decade and Applied Carbon's in-field proposition is incredibly compelling," adds Joshua Posamentier, co-founder and managing partner of Congruent Ventures. "The two most exciting things about this approach are that it profitably swings the agricultural sector from carbon positive to carbon negative and that it can get to world-scale impact, on a meaningful timeline, while saving farmers money."

------

This article originally ran on EnergyCapital.

Rice University makes top 5 lists of best biz schools in the country

top ranking

MBA programs at Rice University’s Jones Graduate School of Business have landed two top five rankings in The Princeton Review’s annual list of the country’s best business schools.

Rice earned a No. 4 ranking for its online MBA program and a No. 5 ranking for its MBA program in finance.

“These rankings are indicative of the high-quality education offered through all of our MBA programs. Students studying finance at Rice … are taught by faculty whose research and expertise enhances core classes and hard skills, so students are not just prepared to be successful in their careers, but they are also prepared to think critically about their roles and to lead in their industry,” Peter Rodriguez, dean of the Jones Graduate School of Business, says in a news release.

“These rankings are also indicative of our broader approach: offering students flexibility in their pursuit of an MBA, while retaining the experience of studying with world-class faculty — no matter what program they choose,” Rodriguez adds.

Rice also achieved high rankings in two other MBA categories: No. 8 for “greatest resources for women” and No. 10 for “greatest resources for minority students.”

The Princeton Review’s 2024 business school rankings are based on data from surveys of administrators at more than 400 business schools as well as surveys of 32,200 students enrolled in the schools’ MBA programs.

“The schools that made our list for 2024 all have impressive individual distinctions,” Rob Franek, The Princeton Review’s editor-in-chief, says in a news release. “What they share are three characteristics that broadly informed our criteria for these rankings: outstanding academics, robust experiential learning components and excellent career services.”

Rice also ranks as the top school for graduate entrepreneurship programs, which Princeton Review released last fall. The University of Houston ranks as No. 1 for undergraduate entrepreneurship programs.

3 Houston innovators to know this week

who's who

Editor's note: Every week, I introduce you to a handful of Houston innovators to know recently making headlines with news of innovative technology, investment activity, and more. This week's batch includes a Houston chemist, a cleaning product founder, and a UH researcher.


James Tour, chemist at Rice University

The four-year agreement will support the team’s ongoing work on removing PFAS from soil. Photo via Rice University

A Rice University chemist James Tour has secured a new $12 million cooperative agreement with the U.S. Army Engineer Research and Development Center on the team’s work to efficiently remove pollutants from soil.

The four-year agreement will support the team’s ongoing work on removing per- and polyfluoroalkyl substances (PFAS) from contaminated soil through its rapid electrothermal mineralization (REM) process, according to a statement from Rice.

“This is a substantial improvement over previous methods, which often suffer from high energy and water consumption, limited efficiency and often require the soil to be removed,” Tour says. Read more.

Kristy Phillips, founder and CEO of Clean Habits

What started as a way to bring natural cleaning products in from overseas has turned into a promising application for more sustainable agriculture solutions. Photo via LinkedIn

When something is declared clean, one question invariably springs to mind: just how clean is clean?

Then it is, “What metrics decide what’s clean and what’s not?”

To answer those questions, one must abandon the subjective and delve into the scientific — and that’s where Clean Habits come in. The company has science on its side with Synbio, a patented cleaning formula that combines a unique blend of prebiotics and probiotics for their signature five-day clean.

“Actually, we are a synbiotic, which is a prebiotic and a probiotic fused together,” says Kristy Phillips, founder and CEO of Clean Habits. “And that's what gives us the five-day clean, and we also have the longest shelf life — three years — of any probiotic on the market.” Read more.

Jiming Bao, professor at University of Houston

Th innovative method involves techniques that will be used to measure and visualize temperature distributions without direct contact with the subject being photographed. Photo via UH.edu

A University of Houston professor of electrical and computer engineering, Jiming Bao, is improving thermal imaging and infrared thermography with a new method to measure the continuous spectrum of light.

His innovative method involves techniques that will be used to measure and visualize temperature distributions without direct contact with the subject being photographed, according to the university. The challenges generally faced by conventional thermal imaging is addressed, as the new study hopes to eliminate temperature dependence, and wavelength.

“We designed a technique using a near-infrared spectrometer to measure the continuous spectrum and fit it using the ideal blackbody radiation formula,” Bao tells the journal Device. “This technique includes a simple calibration step to eliminate temperature- and wavelength-dependent emissivity.” Read more.