A California tech company is planning on rolling out a handful of atmospheric water generation projects near Houston. Photo via skyh2o.com

Houstonians are used to filtering their water, but few really ponder why they’re doing it.

“Most people, when they think about water stress, they think about water scarcity, like what you see happening in Northern Africa or maybe the Southern U.S.,” says Alexander von Welczeck, chairman, president and CEO of SkyH2O. “A bigger, creeping issue, particularly in the industrialized world, is water toxicity.”

Some Houston tap water contains “forever chemicals” that can be toxic, as some reports have found. In fact, says von Welczeck, water toxicity is a problem across the Gulf Coast. That’s why the California-based businessman has identified Houston as the first region to benefit from SkyH2O’s technology.

The company will break ground on its first SkyH2O Station in the first quarter of 2024 in Dickinson, strategically placed between Houston and Galveston. That will be followed by another in Angleton. Eventually, says von Welczeck, there will be eight SkyH2O stations in the greater Houston area.

Von Welczek describes a SkyH2O Station as bearing a resemblance to “a big, modern gas station, but as opposed to gas, the primary product is fresh, healthy water.” With everything from charging stations for electric vehicles to a farmers market-style set-up of sustainable food, the stations will indeed be like a futuristic gas station.

Water will be distributed both in recyclable packaging for smaller businesses and homes, and in bulk to fill water tankers for ranches and other larger customers. Von Welczeck foresees, for example, Galveston cruise ships filling up with a supply of water at that station.

But where will this fresh, clean water come from? SkyH2O uses atmospheric water generation, or AWG, systems to pull humidity from the air and turn it into potable water. The higher the humidity, the more water can be produced.

“Obviously in and around Houston, we have tremendous humidity,” von Welczeck says.

This is all done using the Maximus 4260, the latest and greatest of the company’s AWG systems. The machine is rated to produce 10,500 litres of fresh, potable water a day. It produces net zero water, meaning that it doesn’t come from any existing water resource.

What comes out initially is a semi-distilled, purified water. The next step is further filtering it and adding minerals to make the product potable for customers. Von Welczeck says that SkyH2O’s water meets the Texas Commission on Environmental Quality’s water standards.

The serial entrepreneur has been working in the climate tech space since 2002 and has a proven track record. Von Welczeck says that he sold his company, Solar Power Partners, to NRG in 2010.

“From my perspective, most everything in climate technology, whether it's clean energy, recycling, even food and water, they're all interrelated,” he says.

After opening around 20 Texas locations, von Welczeck has his sights set on covering the entire Gulf Coast. After that, he hopes to expand to Mediterranean Europe, particularly water-strapped islands. He’s even in discussions with potential clients in the Middle East. But Houston will be the first to taste SkyH2O’s potentially globe-altering water.

------

This article originally ran on EnergyCapital.

Austin-based Tesla has released new information on its Megapack project, which is being stood up south of Houston in Angleton. Screenshot via YouTube.

Tesla reveals details on massive power storage facility being built south of Houston

texas-sized energy project

Tesla Inc. has taken the wraps off a backup-power storage project in Angleton designed to ease the impact of incidents like February 2021’s near-collapse of the Texas power grid.

The project’s 81 Tesla Megapacks are aimed at providing backup power while reducing reliance on fossil fuels. Tesla says its Megapack batteries store clean energy that can be used anytime.

The Bloomberg news service reported last March that the more than 100-megawatt Angleton project could power about 20,000 homes on a hot summer day. Austin-based Tesla unveiled the 2.5-acre project in a YouTube video posted January 6.

A presentation made to the Angleton City Council by Plus Power LLC indicates the Megapack project is supposed to be part of a larger energy-storage “park.” The park could generate about $1 million in property tax revenue over a 10-year span, the presentation says.

San Francisco-based Plus Power, which has an office in Spring, develops battery-equipped systems for energy storage.

The Megapack project, built by Tesla subsidiary Gambit Energy Storage LLC, is registered with the Electric Reliability Council of Texas (ERCOT), according to Bloomberg. The quasi-governmental agency operates about 95 percent of the Texas power grid. ERCOT came under intense criticism after last February’s massive winter storm left millions of Texans without power for several days.

Tesla’s new energy-storage system is adjacent to a Texas-New Mexico Power Co. substation, Bloomberg says.

“Tesla’s energy-storage business on a percentage basis is growing faster than their car business, and it’s only going to accelerate,” Daniel Finn-Foley, head of energy storage at Wood MacKenzie Power and Renewables, told Bloomberg. “They are absolutely respected as a player, and they are competing aggressively on price.”

In November, the Texas Public Utilities Commission approved an application from Tesla subsidiary Tesla Energy Ventures LLC to be a retail provider of electricity in Texas. The power will be sold to residential and business customers throughout the ERCOT grid.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

UH student earns prestigious award for cancer vaccine research

up-and-comer

Cole Woody, a biology major in the College of Natural Sciences and Mathematics at the University of Houston, has been awarded a Barry Goldwater Scholarship, becoming the first sophomore in UH history to earn the prestigious prize for research in natural sciences, mathematics and engineering.

Woody was recognized for his research on developing potential cancer vaccines through chimeric RNAs. The work specifically investigates how a vaccine can more aggressively target cancers.

Woody developed the MHCole Pipeline, a bioinformatic tool that predicts peptide-HLA binding affinities with nearly 100 percent improvement in data processing efficiency. The MHCole Pipeline aims to find cancer-specific targets and develop personalized vaccines. Woody is also a junior research associate at the UH Sequencing Core and works in Dr. Steven Hsesheng Lin’s lab at MD Anderson Cancer Center.

“Cole’s work ethic and dedication are unmatched,” Preethi Gunaratne, director of the UH Sequencing Core and professor of Biology & Biochemistry at NSM, said in a news release. “He consistently worked 60 to 70 hours a week, committing himself to learning new techniques and coding the MHCole pipeline.”

Woody plans to earn his MD-PhD and has been accepted into the Harvard/MIT MD-PhD Early Access to Research Training (HEART) program. According to UH, recipients of the Goldwater Scholarship often go on to win various nationally prestigious awards.

"Cole’s ability to independently design and implement such a transformative tool at such an early stage in his career demonstrates his exceptional technical acumen and creative problem-solving skills, which should go a long way towards a promising career in immuno-oncology,” Gunaratne added in the release.

Houston founder on shaping the future of medicine through biotechnology and resilience

Guest Column

Living with chronic disease has shaped my life in profound ways. My journey began in 5th grade when I was diagnosed with Scheuermann’s disease, a degenerative disc condition that kept me sidelined for an entire year. Later, I was diagnosed with hereditary neuropathy with liability to pressure palsies (HNPP), a condition that significantly impacts nerve recovery. These experiences didn’t just challenge me physically, they reshaped my perspective on healthcare — and ultimately set me on my path to entrepreneurship. What started as personal health struggles evolved into a mission to transform patient care through innovative biotechnology.

A defining part of living with these conditions was the diagnostic process. I underwent nerve tests that involved electrical shocks to my hands and arms — without anesthesia — to measure nerve activity. The pain was intense, and each test left me thinking: There has to be a better way. Even in those difficult moments, I found myself thinking about how to improve the tools and processes used in healthcare.

HNPP, in particular, has been a frustrating condition. For most people, sleeping on an arm might cause temporary numbness that disappears in an hour. For me, that same numbness can last six months. Even more debilitating is the loss of strength and fine motor skills. Living with this reality forced me to take an active role in understanding my health and seeking solutions, a mindset that would later shape my approach to leadership.

Growing up in Houston, I was surrounded by innovation. My grandfather, a pioneering urologist, was among the first to introduce kidney dialysis in the city in the 1950s. His dedication to advancing patient care initially inspired me to pursue medicine. Though my path eventually led me to healthcare administration and eventually biotech, his influence instilled in me a lifelong commitment to medicine and making a difference.

Houston’s thriving medical and entrepreneurial ecosystems played a critical role in my journey. The city’s culture of innovation and collaboration provided opportunities to explore solutions to unmet medical needs. When I transitioned from healthcare administration to founding biotech companies, I drew on the same resilience I had developed while managing my own health challenges.

My experience with chronic disease also shaped my leadership philosophy. Rather than accepting diagnoses passively, I took a proactive approach questioning assumptions, collaborating with experts, and seeking new solutions. These same principles now guide decision-making at FibroBiologics, where we are committed to developing groundbreaking therapies that go beyond symptom management to address the root causes of disease.

The resilience I built through my health struggles has been invaluable in navigating business challenges. While my early career in healthcare administration provided industry insights, launching and leading companies required the same determination I had relied on in my personal health journey.

I believe the future of healthcare lies in curative treatments, not just symptom management. Fibroblast cells hold the promise of engaging the body’s own healing processes — the most powerful cure for chronic diseases. Cell therapy represents both a scientific breakthrough and a significant business opportunity, one that has the potential to improve patient outcomes while reducing long-term healthcare costs.

Innovation in medicine isn’t just about technology; it’s about reimagining what’s possible. The future of healthcare is being written today. At FibroBiologics, our mission is driven by more than just financial success. We are focused on making a meaningful impact on patients’ lives, and this purpose-driven approach helps attract talent, engage stakeholders, and differentiate in the marketplace. Aligning business goals with patient needs isn’t just the right thing to do, it’s a powerful model for sustainable growth and lasting innovation in biotech.

---

Pete O’Heeron is the CEO and founder of FibroBiologics, a Houston-based regenerative medicine company.


Houston researchers make headway on affordable, sustainable sodium-ion battery

Energy Solutions

A new study by researchers from Rice University’s Department of Materials Science and NanoEngineering, Baylor University and the Indian Institute of Science Education and Research Thiruvananthapuram has introduced a solution that could help develop more affordable and sustainable sodium-ion batteries.

The findings were recently published in the journal Advanced Functional Materials.

The team worked with tiny cone- and disc-shaped carbon materials from oil and gas industry byproducts with a pure graphitic structure. The forms allow for more efficient energy storage with larger sodium and potassium ions, which is a challenge for anodes in battery research. Sodium and potassium are more widely available and cheaper than lithium.

“For years, we’ve known that sodium and potassium are attractive alternatives to lithium,” Pulickel Ajayan, the Benjamin M. and Mary Greenwood Anderson Professor of Engineering at Rice, said in a news release. “But the challenge has always been finding carbon-based anode materials that can store these larger ions efficiently.”

Lithium-ion batteries traditionally rely on graphite as an anode material. However, traditional graphite structures cannot efficiently store sodium or potassium energy, since the atoms are too big and interactions become too complex to slide in and out of graphite’s layers. The cone and disc structures “offer curvature and spacing that welcome sodium and potassium ions without the need for chemical doping (the process of intentionally adding small amounts of specific atoms or molecules to change its properties) or other artificial modifications,” according to the study.

“This is one of the first clear demonstrations of sodium-ion intercalation in pure graphitic materials with such stability,” Atin Pramanik, first author of the study and a postdoctoral associate in Ajayan’s lab, said in the release. “It challenges the belief that pure graphite can’t work with sodium.”

In lab tests, the carbon cones and discs stored about 230 milliamp-hours of charge per gram (mAh/g) by using sodium ions. They still held 151 mAh/g even after 2,000 fast charging cycles. They also worked with potassium-ion batteries.

“We believe this discovery opens up a new design space for battery anodes,” Ajayan added in the release. “Instead of changing the chemistry, we’re changing the shape, and that’s proving to be just as interesting.”

---

This story originally appeared on EnergyCapitalHTX.com.