From robotics to artificial intelligence, here's how Amazon gets its products to Houstonians in record time. Photo by Natalie Harms/InnovationMap

How Amazon's Houston fulfillment center uses AI technology and robotics to move millions of products

Prime time

Last summer, Amazon opened the doors to its North Houston distribution center — one of the company's 50 centers worldwide that uses automation and robotics to fulfill online orders.

The Pinto Business Park facility has millions of products in inventory across four floors. Products that are 25 pounds or less (nothing heavier is stocked at this location) pass through 20 miles of conveyor belts, 1,500 employees, and hundreds of robots.

The center also has daily tours open to the public. We recently visited to see for ourselves the process a product goes through at this Houston plant. From stowing to shipping, here's how packages go from your shopping cart to your front porch.

Starting with stowing 

Natalie Harms/InnovationMap

A product's first step in an Amazon facility is stowing. There's no categorization of the products — it's not like there's one floor for one type of item or anything.

"It's completely randomly stowed," says Donna Beadle, PR specialist for Amazon. "She could be stowing cat food on this floor, and so could somebody on floor two."

An Amazon employee would scan an item and stow it into an empty bin of her choosing — sort of. To prevent confusion, a light projected indicates bins that are off limits to stow the item. The light identifies bins that have similar products. Keeping similar products apart helps prevents mistakes for the employee who later pulls those items once its ordered.

The system also sees where the employee is putting each item, rather than having to scan each item and the bin as well. This is a newer feature — the facility originally opened with hand-held scanners.

"Our next generation workstation is that they don't have to hold that scanner — they have hands free," says Brenda Alford, regional communications manager at Amazon.

Robots on the move

Once the bins are fully stocked, the robot — which is the orange device on the bottom of the yellow bins — moves about the facility by scanning QR codes on the floor.

Should a product fall out, an employee wearing a special vest can enter to retrieve it. That vest will send off a signal to the robots, which will then decrease their speeds and come to a stop when the employee comes close.

"It's an extra measure of safety so that people can interact with the robots and feel safe," says Beadle.

Picking before packing

Natalie Harms/InnovationMap

Once an item is ordered, the bin with that item appears in the pick process at the center. The system tells the Amazon employee which item to grab and which bin to put it in. The bins will have products for multiple different orders — another employee later will separate it out later.

"Often we describe it as a symphony — our technology and our associates working together," Alford says, noting that sometimes the company might receive criticism about using robots over humans. "We can't do this without these humans.

Amazon employees receive their benefits from day one on the job, Beadle says, and they work four, 10-hour days a week.

"We feel like that way they have more time with their families — they get three days off versus two days off. And that gives them time to heal and rest up," she says.

Bin to bin and back again

Natalie Harms/InnovationMap

Once full, the Amazon associate will push the bin onto a series of conveyor belts. The whole facility has 20 miles of conveyor belts — much of which happens overhead.

The bins then zigzag toward the pack process, which is separated to different stations. There are single-product stations and multiple package stations. The system determines where the bin should go, and some stations pack products that are determined to need packing materials, while others do not.

Single-product packaging

Natalie Harms/InnovationMap

At the packing process, the Amazon employee is told which size box to assemble — he or she can grab a bigger box, but they can't select a smaller one. The tape dispenser doles out the correct size of tape for that box automatically.

Once packaged up, a sticker with a barcode is placed on the box. This code will later be used to print the label for shipping. At this point in the process, no personal information has been revealed to anyone. In fact, most packages leave the facility without any personal information being viewed by employees.

In an effort to reduce packing materials, some products are shipped in the container they came in. In that instance, the packer would just place the barcode sticker on the package before sending it on the conveyor belt.

"If we don't need another box for that product, we don't use one," Beadle says. "We work with companies to make that happen, so we don't have to use more boxes if we don't have to."

SLAM 


While the robotics aren't slamming labels on packages, the SLAM process (short for scan, label, apply and manifest) is the first step in the process that includes a customer's personal information. During this process, the barcode is scanned, the package is weighed, and the label is printed and affixed to the package using a puff of air.

A package might be automatically pulled from the line if something seems to be off in the package's weight.

"Say you bought toothpaste, and it says that toothpaste weighs 20 pounds, we know something's wrong," Beadle says. "Like maybe that it was a pack that didn't get separated."

If the package is kicked off, an Amazon associate, called a problem solver, will assess the situation and make it right before returning it to the conveyor belt.

Kicked into gear

Once labeled, all the packages are sent on their final conveyor belt ride. Using a scanning process, the packages are kicked by an automated foot that sends them into a line to be loaded into an Amazon truck.

If a package misses its chute the first time around, it makes the loop again. The system can tell if a package is caught in the loop for whatever reason, and a problem solver might be called to assess the situation.

Down the slide

Natalie Harms/InnovationMap

After being kicked off the belt, the package then slides down a spiral chute that, despite looking like a playground slide, is off limits to any humans wanting to keep their job.

"People ask if you can go down the slide, and we always say that on your last day of work," Beadle jokes.

On to the shipping process

Natalie Harms/InnovationMap

The packages leave the facility in Amazon trucks and head to one more pit stop before making it to the customer.

"They don't go directly to your house after this process," Beadle says. "They go to a sortation center."

This could mean a USPS or UPS stop, but it depends on where the customer lives.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston Intercontinental Airport's innovative upgrades ready for takeoff

coming soon

After almost five years of construction, passengers heading out of Bush Intercontinental Airport on October 22 will be the very first to experience the expanded, upgraded, and stylish Terminal D-West Pier, an expansion of the existing Terminal D.

The new terminal is part of a broader initiative, the IAH Terminal Redevelopment Program (ITRP), a $1.458 billion project aimed at modernizing the airport's international travel capabilities. ITRP is the single largest capital improvement project developed by Houston Airports and include the refresh of the existing Terminal D, completed in 2023; the expansion of Terminal D with a new D-West Pier, which will be completed this fall 2024; and a new International Central Processor, slated for winter of 2024 and summer of 2025. More than 3,000 people spent more than one million hours on the construction project.

Terminal D-West Pier features six new gates — D1 through D6 — that can simultaneously accommodate wide-body aircraft or converted to accommodate 10 narrow-body airplanes. The expanded terminal with its new capabilities supports increasing demand from passengers and airlines and should enhance the overall travel experience.

The new terminal is part of a broader initiative, the IAH Terminal Redevelopment Program (ITRP), a $1.458 billion project aimed at modernizing the airport's international travel capabilities. Photo courtesy of Houston Airports

In addition to adding 160,000-square-feet, the new wing also boasts eight new, Houston-inspired works by local artists. Those kind of details are why the Houston airport system won Best Airport Art & Entertainment Program in the prestigious Skytrax awards.

The airport's 250 newly-hired employees will work among 16 new retail and dining concessions concepts in the Terminal D-West Pier. Passengers can dine at Houston Supply Co., which opened last month. Local restaurants The Kitchen and The Annie, along with popular national brands Popeyes, Einstein Bros. Bagels, Jamba Juice, Be Relax, Jetero Market, Semi-Sweet Confectionary, and a Lego Store will open for business on October 22.

The new wing also boasts eight new, Houston-inspired works by local artists. Photo courtesy of Houston Airports

"We are focused on improving the overall passenger experience at the airport — from parking and traffic to providing modern terminals with the right amenities. This project is a major investment in our city's future," Houston Mayor John Whitmire said in a statement. "The newly expanded international terminal enhances Houston's reputation as a world-class city and provides a boost to our economy, supporting jobs and attracting more visitors from around the globe."

The new terminal offers a host of other amenities designed to make passengers' experiences more comfortable. They include a mother's room, a sensory room, a child's play area, and expanded men's, women's, and family restrooms. The restrooms utilize smart technology sensors that trigger soap and water. Door locks alert to whether a restroom stall is vacant or occupied and soft LED lighting accentuates floor-to-ceiling photography spotlighting Houston's natural beauty.

The new wing has 16 new retail and dining concessions concepts. Photo courtesy of Houston Airports

An International Arrivals corridor provides views of the airfield, the concourse, and large-scale photography inspired by Houston.

More than 500 modern and comfortable seats, including chairs, cushioned benches, and cozy loungers, featuring cup holders and charging capabilities, are present inside the terminal.

"We are excited to share this milestone with the residents of Houston," said Jim Szczesniak, director of aviation for Houston Airports. "The opening of the Terminal D-West Pier is a testament to the hard work and dedication of our team and our partners. This world-class facility will provide a seamless and efficient travel experience for millions of passengers each year. The new pier will provide the necessary capacity so that Houston can continue to attract more nonstop flights to cities around the globe."

New features include a mother's room, a sensory room, a child's play area, and expanded men's, women's, and family restrooms. Photo courtesy of Houston Airports

------

This article originally ran on CultureMap.

12 health tech startups named to Houston accelerator's next bootcamp

onboarding

Twelve promising health tech startups have been selected for the annual bootcamp at the Texas Medical Center.

TMC's Accelerator for HealthTech selected 12 companies from around the world and across specialties for the opportunity. Following the bootcamp, TMC will move forward a selection of startups to join its accelerator.

"Houston, a thriving hub for innovation, is rapidly becoming the destination of choice for healthtech companies," reads a statement from TMC. "With the Texas Medical Center at its heart, the city offers unparalleled resources, cutting-edge research facilities, and a collaborative spirit that fosters growth. This environment not only attracts startups but also provides them with the necessary tools to navigate the complex landscape of healthcare commercialization."

Through the bootcamp, the participants will engage with advisors and industry experts, refine their business models, prepare for market entry, and have opportunities for collaboration with the TMC's member organizations.

The selected bootcamp companies, according to TMC, include:

  • Alyf, founded in Newport Beach, California, has developed a personalized cardiac care system that brings patients and providers together with real-time, AI-driven insights, enabling them to monitor, track, and improve cardiac health outcomes collaboratively.
  • Seoul, South Korea-based Deepmetrics leverages artificial intelligence to provide ICU smart care services that optimize medical device settings, such as mechanical ventilators, to reduce mortality and shorten the length of stay for critically ill patients worldwide.
  • EquityQuotient, from New York City, is a healthcare intelligence platform that automates compliance and provides actionable insights by aggregating public, private, and first-party data, using proprietary analytics to help leaders address disparities, improve outcomes, and lower care costs.
  • Also from New York City, Ethermed's AI-powered solution streamlines prior authorizations, eliminating up to 90 percent of auths and 70 percent of the labor involved. Ethermed requires no workflow changes, is fully auditable, and offers aligned incentives from a mission-driven, human-focused company.
  • Fibricheck, based in Hasselt, Belgium, transforms ordinary smartphones into regulated digital heart rhythm monitors, offering unparalleled access to cardiovascular diagnostics for patients and streamlined workflows for physicians.
  • Austin-based NearWave has developed a non-invasive, AI-powered handheld imaging device that can predict breast cancer therapy response within seven days.
  • Pragmaclin, founded in Newfoundland, Canada, developed a cutting-edge PRIMS (Parkinson’s Remote Interactive Management System) that leverages depth cameras and machine learning to monitor and assess Parkinson’s Disease symptoms, offering healthcare professionals remote and in-clinic insights to enhance treatment decisions.
  • Somnair, a Baltimore, Maryland, company, is developing a non-invasive neurostimulation oral appliance for treating obstructive sleep apnea, offering a sleek, retainer-sized device that provides an effective alternative to CPAP or invasive surgery for millions of patients.
  • Vancouver, Canada-headquartered Total Flow Medical is developing solutions to enhance the quality of care and life for patients requiring the use of a heart-lung machine during surgery or life support.
  • Tympulse, hailing from Dublin, Ireland, is commercializing TympanoColl, an innovative and disruptive solution for eardrum (Tympanic Membrane) repair in an outpatient setting through the ear canal.
  • Perth, Australia-based Vital Trace is developing a continuous lactate monitor for real-time, accurate detection of fetal distress.
  • New York City's WorkUp is a healthcare-specific talent pipeline management platform that connects students with tailored resources for their clinical career journey, providing personalized support as their needs evolve.

University of Houston-founded company secures $2.5M in NIH grant funding

all in the timing

You could say that the booming success of Houston biotech company CellChorus owes very much to auspicious TIMING. Those six letters stand for Time-lapse Imaging Microscopy In Nanowell Grids, a platform for dynamic single-cell analysis.

This week, CellChorus announced that the company, along with The University of Houston, has been awarded up to $2.5 million in funding from the National Center for Advancing Translational Sciences (NCATS) at the National Institute of Health. A $350,000 Phase I grant is already underway. Once predetermined milestones are achieved, this will lead to a two-year $2.1 million Phase II grant.

The TIMING platform was created by UH Single Cell Lab researchers Navin Varadarajan and Badri Roysam. TIMING generates high-throughput in-vitro assays that quantitatively profile interactions between cells on a large scale, particularly what happens when immune cells confront target cells. This has been especially useful in the realm of immuno-oncology, where it has demonstrated its power in designing novel therapies, selecting lead candidates for clinical trials and evaluating the potency of manufactured cells.

“By combining AI, microscale manufacturing and advanced microscopy, the TIMING platform yields deep insight into cellular behaviors that directly impact human disease and new classes of therapeutics,” says Rebecca Berdeaux, chief scientific officer at CellChorus. “The generous support of NCATS enables our development of computational tools that will ultimately integrate single-cell dynamic functional analysis of cell behavior with intracellular signaling events.”

Houston’s CellChorus Innovation Lab supports both the further development of TIMING and projects for early-access customers. Those customers include top-25 biopharmaceutical companies, venture-backed biotechnology companies, a leading comprehensive cancer center and a top pediatric hospital, says CEO Daniel Meyer.

CellChorus’s publications include papers written in collaboration with researchers from the Baylor College of Medicine, Houston Methodist, MD Anderson, Texas Children’s Hospital, the University of Texas and UTHealth in journals including Nature Cancer, Journal of Clinical Investigation and The Journal for ImmunoTherapy of Cancer.

The new Small Business Technology Transfer (STTR) award will specifically support the development of a scalable integrated software system conceived with the goal of analyzing cells that are not fluorescently labeled. This label-free analysis will be based on new AI and machine learning (ML) models trained on tens of millions of images of cells.

“This is an opportunity to leverage artificial intelligence methods for advancing the life sciences,” says Roysam. “We are especially excited about its applications to advancing cell-based immunotherapy to treat cancer and other diseases.”

The Houston-born-and-bred company couldn’t have a more appropriate home, says Meyer.

“Houston is a premier location for clinical care and the development of biotechnology and life sciences technologies. In particular, Houston has established itself as a leader in the development and delivery of immune cell-based therapies,” the CEO explains. “As a spin-out from the Single Cell Lab at the University of Houston, we benefit from working with world-class experts at local institutions.”

In May, the company received a similar $2.5 million SBIR grant from NCATS at the NIH. Also this summer, CellChorus's technology was featured in Nature Cancer.