From robotics to artificial intelligence, here's how Amazon gets its products to Houstonians in record time. Photo by Natalie Harms/InnovationMap

How Amazon's Houston fulfillment center uses AI technology and robotics to move millions of products

Prime time

Last summer, Amazon opened the doors to its North Houston distribution center — one of the company's 50 centers worldwide that uses automation and robotics to fulfill online orders.

The Pinto Business Park facility has millions of products in inventory across four floors. Products that are 25 pounds or less (nothing heavier is stocked at this location) pass through 20 miles of conveyor belts, 1,500 employees, and hundreds of robots.

The center also has daily tours open to the public. We recently visited to see for ourselves the process a product goes through at this Houston plant. From stowing to shipping, here's how packages go from your shopping cart to your front porch.

Starting with stowing 

Natalie Harms/InnovationMap

A product's first step in an Amazon facility is stowing. There's no categorization of the products — it's not like there's one floor for one type of item or anything.

"It's completely randomly stowed," says Donna Beadle, PR specialist for Amazon. "She could be stowing cat food on this floor, and so could somebody on floor two."

An Amazon employee would scan an item and stow it into an empty bin of her choosing — sort of. To prevent confusion, a light projected indicates bins that are off limits to stow the item. The light identifies bins that have similar products. Keeping similar products apart helps prevents mistakes for the employee who later pulls those items once its ordered.

The system also sees where the employee is putting each item, rather than having to scan each item and the bin as well. This is a newer feature — the facility originally opened with hand-held scanners.

"Our next generation workstation is that they don't have to hold that scanner — they have hands free," says Brenda Alford, regional communications manager at Amazon.

Robots on the move

Once the bins are fully stocked, the robot — which is the orange device on the bottom of the yellow bins — moves about the facility by scanning QR codes on the floor.

Should a product fall out, an employee wearing a special vest can enter to retrieve it. That vest will send off a signal to the robots, which will then decrease their speeds and come to a stop when the employee comes close.

"It's an extra measure of safety so that people can interact with the robots and feel safe," says Beadle.

Picking before packing

Natalie Harms/InnovationMap

Once an item is ordered, the bin with that item appears in the pick process at the center. The system tells the Amazon employee which item to grab and which bin to put it in. The bins will have products for multiple different orders — another employee later will separate it out later.

"Often we describe it as a symphony — our technology and our associates working together," Alford says, noting that sometimes the company might receive criticism about using robots over humans. "We can't do this without these humans.

Amazon employees receive their benefits from day one on the job, Beadle says, and they work four, 10-hour days a week.

"We feel like that way they have more time with their families — they get three days off versus two days off. And that gives them time to heal and rest up," she says.

Bin to bin and back again

Natalie Harms/InnovationMap

Once full, the Amazon associate will push the bin onto a series of conveyor belts. The whole facility has 20 miles of conveyor belts — much of which happens overhead.

The bins then zigzag toward the pack process, which is separated to different stations. There are single-product stations and multiple package stations. The system determines where the bin should go, and some stations pack products that are determined to need packing materials, while others do not.

Single-product packaging

Natalie Harms/InnovationMap

At the packing process, the Amazon employee is told which size box to assemble — he or she can grab a bigger box, but they can't select a smaller one. The tape dispenser doles out the correct size of tape for that box automatically.

Once packaged up, a sticker with a barcode is placed on the box. This code will later be used to print the label for shipping. At this point in the process, no personal information has been revealed to anyone. In fact, most packages leave the facility without any personal information being viewed by employees.

In an effort to reduce packing materials, some products are shipped in the container they came in. In that instance, the packer would just place the barcode sticker on the package before sending it on the conveyor belt.

"If we don't need another box for that product, we don't use one," Beadle says. "We work with companies to make that happen, so we don't have to use more boxes if we don't have to."

SLAM 


While the robotics aren't slamming labels on packages, the SLAM process (short for scan, label, apply and manifest) is the first step in the process that includes a customer's personal information. During this process, the barcode is scanned, the package is weighed, and the label is printed and affixed to the package using a puff of air.

A package might be automatically pulled from the line if something seems to be off in the package's weight.

"Say you bought toothpaste, and it says that toothpaste weighs 20 pounds, we know something's wrong," Beadle says. "Like maybe that it was a pack that didn't get separated."

If the package is kicked off, an Amazon associate, called a problem solver, will assess the situation and make it right before returning it to the conveyor belt.

Kicked into gear

Once labeled, all the packages are sent on their final conveyor belt ride. Using a scanning process, the packages are kicked by an automated foot that sends them into a line to be loaded into an Amazon truck.

If a package misses its chute the first time around, it makes the loop again. The system can tell if a package is caught in the loop for whatever reason, and a problem solver might be called to assess the situation.

Down the slide

Natalie Harms/InnovationMap

After being kicked off the belt, the package then slides down a spiral chute that, despite looking like a playground slide, is off limits to any humans wanting to keep their job.

"People ask if you can go down the slide, and we always say that on your last day of work," Beadle jokes.

On to the shipping process

Natalie Harms/InnovationMap

The packages leave the facility in Amazon trucks and head to one more pit stop before making it to the customer.

"They don't go directly to your house after this process," Beadle says. "They go to a sortation center."

This could mean a USPS or UPS stop, but it depends on where the customer lives.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston health tech startup secures $27M in financing

money moves

A virtual health care and analytics provider startup has closed its latest round of funding for a total of $27 million in financing.

Medical Informatics Corp. closed a $17 million series B co-led by Maryland-based Catalio Capital Management and California-based Intel Capital. The financing also includes an additional $10 million in debt led by Catalio through Catalio’s structured equity strategy, according to a news release.

“We are excited to have had this round co-led by Catalio and Intel Capital," says Emma Fauss, CEO and co-founder of MIC, in the release. "Catalio brings significant financial and technical resources, while Intel Capital possesses strong operational and industry experience, and we look forward to continuing to leverage both firms’ expertise as we continue to scale.”

MIC created an FDA-cleared virtual care platform, called Sickbay, that gives health care providers and hospitals away to remotely monitor patients in any setting with vendor-neutral real-time medical device integration, workflow automation and standardization.

“We have seen an increased demand for our solution as our clients face significant staffing challenges and are looking for ways to amplify and empower their workforce," Fauss says in the release. "Some of the largest health care systems in the country are standardizing their infrastructure on our Sickbay platform while consolidating IT spend."

Other participants in the round included new investors TGH Innoventures, Tampa General Hospital’s innovation center and venture fund, and Austin-based Notley — as well as existing investors San Francisco-based DCVC, the Texas Medical Center, and nCourage, a Houston-based investment group.

As a part of the round, two individuals from Catalio will join the board at MIC. Jonathan Blankfein, principal at Catalio will join the board of directors, Diamantis Xylas, head of research at Catalio, will join as board observer.

“Health care systems’ need for high-caliber, cost-saving, data-driven technology is only going to increase, and MIC’s proprietary platform is perfectly positioned to address some of the most critical clinical challenges that health care organizations face,” says Blankfein in the release. “We look forward to continuing to support MIC’s strong team as it continues to deliver better outcomes for health care organizations and patients alike.”

Amid the pandemic and the rising need for remote care technology, MIC scaled rapidly in the past two years. The company will use the funding to continue fueling its growth, including hiring specialized talent — deep product specialists and client engagement teams — to support long-term strategic partnerships.

“One of the main barriers to advanced analytics in health care is the siloing of data and today there is a significant need for a platform to enable flexible, centralized and remote monitoring at scale and on demand,” says Mark Rostick, vice president and senior managing director at Intel Capital, in the release. “Medical Informatics is setting a new standard of health care by removing these data silos for health care providers of all sizes and transforming the way patients are monitored from hospital to home with real-time AI.”

Innovation pioneers on why Pumps & Pipes is so uniquely Houston

A Day of Discussion

Pumps & Pipes 2022, Houston’s premier innovation event, is rapidly approaching on December 5 from 8 am-3 pm at the Ion.

Leading up to this exciting event, InnovationMap spoke with several of the speakers representing various industries to ask them, "What makes Pumps & Pipes uniquely Houston?"

Here are their responses:

Dr. Alan Lumsden, chair of cardiovascular surgery at Houston Methodist and Pumps & Pipes founder:

“…What can we learn from one another? What is inside the other person’s toolkit? A lot of solutions are already out there but sometimes we don’t have the ability to see into their toolkit. This has become the driving force behind Pumps & Pipes throughout the last 15 years…”

Dr. Lucie Low, chief scientist for microgravity research at Axiom Space:

“‘Houston, we have a problem’ — everyone knows Houston as a major player in the aerospace industry as highlighted by this famous quote from Apollo 13. What people may not know and what is exciting to me about Houston are the opportunities for collaboration with other industries that can help drive our mission to build communities of healthy humans in space. With the largest medical center in the world right next to Johnson Space Center, Houston is a prime city for innovation at the intersection of medicine and space.”

David Horsup, managing director of technology at OGCI Climate Investments:

“The remarkable diversity of thought, culture, and expertise that exists in Houston creates an incredible cauldron for innovation. The city has been the leading light in pushing frontiers in energy, aerospace, and medicine for many years, and Pumps & Pipes is a powerful ‘node’ for some of the brightest minds across these industries to connect, collaborate, and innovate. I am extremely excited to see how Houston is pivoting to embrace the challenge that climate change is presenting, and the city will play a defining role going forward.”

Purchase tickets for Pumps & Pipes here and follow Pumps & Pipes on social media at LinkedIn, Twitter, and YouTube.

Houston startup founders report on clean energy tech efficacy

seeing results

A team from Rice University has uncovered an inexpensive, scalable way to produce clean-burning hydrogen fuel.

In research published this month in the journal Science, researchers from Rice’s Laboratory for Nanophotonics, in partnership with Syzygy Plasmonics Inc. and Princeton University’s Andlinger Center for Energy and the Environment, detail how they converted ammonia into carbon-free fuel using a light-activated catalyst.

The new catalyst separates the liquid ammonia into hydrogen gas and nitrogen gas. Traditional catalysts require heat for chemical transformations, but the new catalyst can spur reactions with just the use of sunlight or LED light.

Additionally, the team showed that copper-iron antenna-reactors could be used in these light-driven chemical reactions, known as plasmonic photocatalysis. In heat-based reactions, or thermocatalysis, platinum, and related precious (and expensive) metals like palladium, rhodium, and ruthenium are required.

“Transition metals like iron are typically poor thermocatalysts,” Naomi Halas, a co-author of the report from Rice, said in a statement. “This work shows they can be efficient plasmonic photocatalysts. It also demonstrates that photocatalysis can be efficiently performed with inexpensive LED photon sources.”

Halas, Rice's Stanley C. Moore Professor of Electrical and Computer Engineering, was joined on the project by Peter Nordlander, Rice’s Wiess Chair and Professor of Physics and Astronomy, and Rice alumni and adjunct professor of chemistry Hossein Robatjazi. Emily Carter, the Gerhard R. Andlinger Professor in Energy and Environment, represented Princeton University.

“These results are a great motivator," Carter added. "They suggest it is likely that other combinations of abundant metals could be used as cost-effective catalysts for a wide range of chemical reactions.”

Houston-based Syzygy, which Halas and Nordlander founded in 2018, has licensed the technology used in the research and has begun scaled-up tests of the catalyst in the company’s commercially available, LED-powered reactors. According to Rice, the test at Syzygy showed the catalysts retained their efficiency under LED illumination and at a scale 500 times larger than in tests in the lab setup at Rice.

“This discovery paves the way for sustainable, low-cost hydrogen that could be produced locally rather than in massive centralized plants,” Nordlander said in a statement.

Earlier this month, Syzygy closed its $76 million series C round to continue its technology development ahead of future deployment/

Houston is home to many other organizations and researchers leading the charge in growing the hydrogen economy.

Earlier this year, Mayor Sylvester Turner announced he's determined to position the city as hub for hydrogen innovation as one of the EPA's Regional Clean Hydrogen Hubs. Organizations in Texas, Southwest Louisiana and the surrounding Gulf Coast region, known and HyVelocity Hub, also announced this month that it would be applying for the regional funding.

And according to a recent report from The Center for Houston's Future, the Bayou City is poised to "lead a transformational clean hydrogen hub with global impact."