UH physics professor Donna Stokes and Allison Master, an assistant professor in the UH College of Education, were recognized by the Biden Administration for excellence in STEM fields. Photos courtesy UH.

Allison Master, an assistant professor at the University of Houston, is the first from the college to be awarded the Presidential Early Career Award for Scientists and Engineers.

Master, who works in the Department of Psychological, Health and Learning Sciences at the UH College of Education, is one of 400 scientists and engineers to receive the honor from the Biden administration. The award recognizes those who “show exceptional potential for leadership early in their research careers,” according to a statement.

“This award speaks volumes about Allison’s dedication, ingenuity and innovation in educational sciences,” Diane Z. Chase, UH senior vice president for academic affairs and provost, said in a news release. “Her groundbreaking work embodies the university’s commitment to advancing knowledge, fostering equity in education and shaping a brighter future for students and educators alike.”

Master’s research in the Identity and Academic Motivation Lab at UH involves how societal stereotypes contribute to gender gaps in motivation to pursue STEM. Her study also explored ways to counter the stereotypes through educational strategies that make students feel that they belong, what drives children’s interest in STEM and the role of social connections. Her efforts resulted in millions of dollars in grants from the U.S. Department of Education’s Institute of Education Sciences, the National Science Foundation, and other organizations, according to UH.

Established by President Bill Clinton in 1996, PECASE recognizes innovative and far-reaching developments in science and technology, expands awareness of careers in STEM fields, enhances connections between research and its impacts on society, and highlights the importance of science and technology for our nation’s future.

“This is something that was on my radar, sort of like a ‘pie in the sky’ dream that it would be amazing to win it, but I didn’t know if it could ever be possible,” Master said. “I am very grateful to the University of Houston for providing such a supportive environment for innovation, collaboration and meaningful research that made this achievement possible.”

In addition to Master’s honor, the White House also recently recognized UH physics professor Donna Stokes for outstanding mentoring in STEM disciplines with the Presidential Awards for Excellence in Science, Mathematics and Engineering Mentoring.

Stokes’ previous awards include the UH Teaching Excellence Award, the 2023 UH Honors College Outstanding Fellowship Mentorship Award, the 2011 UH Provost Academic Advising and Mentoring Award, a National Science Foundation Career Award, and a National Research Council Post-Doctoral Associateship Award. The National Science Foundation manages the PAESMEM awards, and the White House Office of Science and Technology Policy selects honorees.

PAESMEM award recipients will receive $10,000 and the opportunity to attend professional development events in Washington, D.C.

“Spotlighting STEM educators, researchers and mentors is important to demonstrate the critical role they play in developing and encouraging students to pursue STEM degrees and careers,” Stokes said in a news release. “It is imperative to have STEM educators who can foster the next generation of scientists to address local and national scientific challenges.”
It's time to devote more attention and focus on closing the gender gap in STEM, according to this University of Houston expert. Graphic by Miguel Tovar/University of Houston

Houston innovators: Mentoring women in STEM should be your new year's resolution

Houston voices

Researchers and scientists can give girls a ‘leg up’.

According to Allison Master, assistant professor of psychological, health and learning sciences at the University of Houston: “Stereotypes that STEM [science, technology, engineering and math] is for boys begin in grade school, and by the time they reach high school, many girls have made their decision not to pursue degrees in computer science and engineering because they feel they don’t belong.”

Stats for STEM

The statistics are not encouraging. According to the U.S. Census: “Women made gains – from 8 percent of STEM workers in 1970 to 27 percent in 2019 – but men still dominated the field. Men made up 52 percent of all U.S. workers but 73 percent of all STEM workers.”

“But there are huge disparities between STEM fields in the representation of women,” said Master, whose new paper looks at the emergence of gender gaps among children and adolescents. “Fields like computer science (25 percent of computer jobs are held by women) and engineering (15 percent of engineering jobs are held by women) have some of the lowest percentages of women among STEM fields. On the other hand, women are overrepresented in health fields (74 percent of health-related jobs are held by women).”

Her research specifically looked at computer science and engineering fields. “We wanted to gain a better understanding of why there is such wide variation among STEM fields, and what we can do earlier in the pipeline to encourage more young girls to enter these fields.”

Off to an unfortunate start

“We find that children start to believe that boys are more interested than girls in engineering by age six (first grade), and that children start to believe that boys are more interested than girls in computer science by age eight (third grade). The more that young girls believe those stereotypes, the less interested they are in those fields,” said Master. “If girls believe they won’t belong in fields like computer science and engineering because those are fields ‘for boys,’ then they may miss out on opportunities to try those kinds of activities.”

Master decided to conduct a study on stereotyping gender roles.

“In one study, we told eight and nine year-old children about two computer science activities. When we told them that ‘girls are much less interested than boys’ in one of the activities, we found that girls became much less interested and less willing to try that activity (compared to another activity for which we told them ‘girls and boys are equally interested.’) These stereotypes can shape that choices that young girls make, opening or closing doors to different career pathways,” said Master.

Narrowing the gender gap

How do we turn this around? Mentoring elementary-age students is one way we can increase the percentage of girls who are ushered into STEM fields.

Stem Like a Girl is an initiative that aims to encourage young women to enter the STEM fields. Their website states: “We believe girls need to see strong women in STEM fields to feel supported in pursuing their own science and engineering interests.” An IBM initiative in India has a similar aim. There are lots of terrific organizations working to connect women in STEM as role models for younger girls (e.g., Society of Women Engineers, Black Girls Code, National Girls Collaborative Project, etc.),” Master adds.

Many higher education institutions hold STEM camps for girls exclusively. For instance, University of California-Davis has a program called STEM For Girls – which boasts a student demographic of 79 percent ethnic minorities. The University of Houston Hewlett Packard Enterprise Data Science Institute holds a summer camp each year called the Middle School Girls Coding Academy. This program is focused on middle school girls (rising 6th–8th graders) who learn Scratch, HTML, Game Design, and Python programming. The Academy runs another camp for high school-aged girls.

The big idea

It’s January – time for New Year’s resolutions. How about becoming a mentor or volunteering to give a presentation or teach a camp for young girls in STEM? Master goes on to say that even men in STEM should mentor young women.

“Role models are important because they help girls believe, ‘People like me can succeed,’ and ‘People like me belong here.’ But the most important thing that all role models can do (women and men, because men can also be very effective role models for girls in STEM) is to be relatable and make their work seem interesting and meaningful,” Master says.

So, does your institution have a program in robotics or coding just for girls? Or if you feel like you could benefit from a mentorship program yourself, you can apply at organizations like Harvard Women In Technology +. Harvard WIT+ helps to connect women early in their STEM careers with seasoned mentors.

------

This article originally appeared on the University of Houston's The Big Idea. Sarah Hill, the author of this piece, is the communications manager for the UH Division of Research.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston neighbor named richest small town in Texas for 2025

Ranking It

Affluent Houston neighbor Bellaire is cashing in as the richest small town in Texas for 2025, according to new study from GoBankingRates.

The report, "The Richest Small Town in Every State," used data from the U.S. Census Bureau's American Community Survey to determine the 50 richest small towns in America based on their median household income.

Of course, Houstonians realize that describing Bellaire as a "small town" is a bit of misnomer. Located less than 10 miles from downtown and fully surrounded by the City of Houston, Bellaire is a wealthy enclave that boasts a population of just over 17,000 residents. These affluent citizens earn a median $236,311 in income every year, which GoBankingRates says is the 11th highest household median income out of all 50 cities included in the report.

The average home in this city is worth over $1.12 million, but Bellaire's lavish residential reputation often attracts properties with multimillion-dollar price tags.

Bellaire also earned a shining 81 livability score for its top quality schools, health and safety, commute times, and more. The livability index, provided by Toronto, Canada-based data analytics and real estate platform AreaVibes, said Bellaire has "an abundance of exceptional local amenities."

"Among these are conveniently located grocery stores, charming coffee shops, diverse dining options and plenty of spacious parks," AreaVibes said. "These local amenities contribute significantly to its overall appeal, ensuring that [residents'] daily needs are met and offering ample opportunities for leisure and recreation."

Earlier in 2025, GoBankingRates ranked Bellaire as the No. 23 wealthiest suburb in America, and it's no stranger to being named on similar lists comparing the richest American cities.

---

This article originally appeared on CultureMap.com.

How a Houston startup is taking on corrosion, a costly climate threat

now streaming

Corrosion is not something most people think about, but for Houston's industrial backbone pipelines, refineries, chemical plants, and water infrastructure, it is a silent and costly threat. Replacing damaged steel and overusing chemicals adds hundreds of millions of tons of carbon emissions every year. Despite the scale of the problem, corrosion detection has barely changed in decades.

In a recent episode of the Energy Tech Startups Podcast, Anwar Sadek, founder and CEO of Corrolytics, explained why the traditional approach is not working and how his team is delivering real-time visibility into one of the most overlooked challenges in the energy transition.

From Lab Insight to Industrial Breakthrough

Anwar began as a researcher studying how metals degrade and how microbes accelerate corrosion. He quickly noticed a major gap. Companies could detect the presence of microorganisms, but they could not tell whether those microbes were actually causing corrosion or how quickly the damage was happening. Most tests required shipping samples to a lab and waiting months for results, long after conditions inside the asset had changed.

That gap inspired Corrolytics' breakthrough. The company developed a portable, real-time electrochemical test that measures microbial corrosion activity directly from fluid samples. No invasive probes. No complex lab work. Just the immediate data operators can act on.

“It is like switching from film to digital photography,” Anwar says. “What used to take months now takes a couple of hours.”

Why Corrosion Matters in Houston's Energy Transition

Houston's energy transition is a blend of innovation and practicality. While the world builds new low-carbon systems, the region still depends on existing industrial infrastructure. Keeping those assets safe, efficient, and emission-conscious is essential.

This is where Corrolytics fits in. Every leak prevented, every pipeline protected, and every unnecessary gallon of biocide avoided reduces emissions and improves operational safety. The company is already seeing interest across oil and gas, petrochemicals, water and wastewater treatment, HVAC, industrial cooling, and biofuels. If fluids move through metal, microbial corrosion can occur, and Corrolytics can detect it.

Because microbes evolve quickly, slow testing methods simply cannot keep up. “By the time a company gets lab results, the environment has changed completely,” Anwar explains. “You cannot manage what you cannot measure.”

A Scientist Steps Into the CEO Role

Anwar did not plan to become a CEO. But through the National Science Foundation's ICorps program, he interviewed more than 300 industry stakeholders. Over 95 percent cited microbial corrosion as a major issue with no effective tool to address it. That validation pushed him to transform his research into a product.

Since then, Corrolytics has moved from prototype to real-world pilots in Brazil and Houston, with early partners already using the technology and some preparing to invest. Along the way, Anwar learned to lead teams, speak the language of industry, and guide the company through challenges. “When things go wrong, and they do, it is the CEO's job to steady the team,” he says.

Why Houston

Relocating to Houston accelerated everything. Customers, partners, advisors, and manufacturing talent are all here. For industrial and energy tech startups, Houston offers an ecosystem built for scale.

What's Next

Corrolytics is preparing for broader pilots, commercial partnerships, and team growth as it continues its fundraising efforts. For anyone focused on asset integrity, emissions reduction, or industrial innovation, this is a company to watch.

Listen to the full conversation with Anwar Sadek on the Energy Tech Startups Podcast to learn more:

---

Energy Tech Startups Podcast is hosted by Jason Ethier and Nada Ahmed. It delves into Houston's pivotal role in the energy transition, spotlighting entrepreneurs and industry leaders shaping a low-carbon future.

This article originally appeared on our sister site, EnergyCapitalHTX.com.

These 50+ Houston scientists rank among world’s most cited

science stars

Fifty-one scientists and professors from Houston-area universities and institutions were named among the most cited in the world for their research in medicine, materials sciences and an array of other fields.

The Clarivate Highly Cited Researchers considers researchers who have authored multiple "Highly Cited Papers" that rank in the top 1percent by citations for their fields in the Web of Science Core Collection. The final list is then determined by other quantitative and qualitative measures by Clarivate's judges to recognize "researchers whose exceptional and community-wide contributions shape the future of science, technology and academia globally."

This year, 6,868 individual researchers from 60 different countries were named to the list. About 38 percent of the researchers are based in the U.S., with China following in second place at about 20 percent.

However, the Chinese Academy of Sciences brought in the most entries, with 258 researchers recognized. Harvard University with 170 researchers and Stanford University with 141 rounded out the top 3.

Looking more locally, the University of Texas at Austin landed among the top 50 institutions for the first time this year, tying for 46th place with the Mayo Clinic and University of Minnesota Twin Cities, each with 27 researchers recognized.

Houston once again had a strong showing on the list, with MD Anderson leading the pack. Below is a list of the Houston-area highly cited researchers and their fields.

UT MD Anderson Cancer Center

  • Ajani Jaffer (Cross-Field)
  • James P. Allison (Cross-Field)
  • Maria E. Cabanillas (Cross-Field)
  • Boyi Gan (Molecular Biology and Genetics)
  • Maura L. Gillison (Cross-Field)
  • David Hong (Cross-Field)
  • Scott E. Kopetz (Clinical Medicine)
  • Pranavi Koppula (Cross-Field)
  • Guang Lei (Cross-Field)
  • Sattva S. Neelapu (Cross-Field)
  • Padmanee Sharma (Molecular Biology and Genetics)
  • Vivek Subbiah (Clinical Medicine)
  • Jennifer A. Wargo (Molecular Biology and Genetics)
  • William G. Wierda (Clinical Medicine)
  • Ignacio I. Wistuba (Clinical Medicine)
  • Yilei Zhang (Cross-Field)
  • Li Zhuang (Cross-Field)

Rice University

  • Pulickel M. Ajayan (Materials Science)
  • Pedro J. J. Alvarez (Environment and Ecology)
  • Neva C. Durand (Cross-Field)
  • Menachem Elimelech (Chemistry and Environment and Ecology)
  • Zhiwei Fang (Cross-Field)
  • Naomi J. Halas (Cross-Field)
  • Jun Lou (Materials Science)
  • Aditya D. Mohite (Cross-Field)
  • Peter Nordlander (Cross-Field)
  • Andreas S. Tolias (Cross-Field)
  • James M. Tour (Cross-Field)
  • Robert Vajtai (Cross-Field)
  • Haotian Wang (Chemistry and Materials Science)
  • Zhen-Yu Wu (Cross-Field)

Baylor College of Medicine

  • Nadim J. Ajami (Cross-Field)
  • Biykem Bozkurt (Clinical Medicine)
  • Hashem B. El-Serag (Clinical Medicine)
  • Matthew J. Ellis (Cross-Field)
  • Richard A. Gibbs (Cross-Field)
  • Peter H. Jones (Pharmacology and Toxicology)
  • Sanjay J. Mathew (Cross-Field)
  • Joseph F. Petrosino (Cross-Field)
  • Fritz J. Sedlazeck (Biology and Biochemistry)
  • James Versalovic (Cross-Field)

University of Houston

  • Zhifeng Ren (Cross-Field)
  • Yan Yao (Cross-Field)
  • Yufeng Zhao (Cross-Field)
  • UT Health Science Center Houston
  • Hongfang Liu (Cross-Field)
  • Louise D. McCullough (Cross-Field)
  • Claudio Soto (Cross-Field)

UTMB Galveston

  • Erez Lieberman Aiden (Cross-Field)
  • Pei-Yong Shi (Cross-Field)

Houston Methodist

  • Eamonn M. M. Quigley (Cross-Field)