UH physics professor Donna Stokes and Allison Master, an assistant professor in the UH College of Education, were recognized by the Biden Administration for excellence in STEM fields. Photos courtesy UH.

Allison Master, an assistant professor at the University of Houston, is the first from the college to be awarded the Presidential Early Career Award for Scientists and Engineers.

Master, who works in the Department of Psychological, Health and Learning Sciences at the UH College of Education, is one of 400 scientists and engineers to receive the honor from the Biden administration. The award recognizes those who “show exceptional potential for leadership early in their research careers,” according to a statement.

“This award speaks volumes about Allison’s dedication, ingenuity and innovation in educational sciences,” Diane Z. Chase, UH senior vice president for academic affairs and provost, said in a news release. “Her groundbreaking work embodies the university’s commitment to advancing knowledge, fostering equity in education and shaping a brighter future for students and educators alike.”

Master’s research in the Identity and Academic Motivation Lab at UH involves how societal stereotypes contribute to gender gaps in motivation to pursue STEM. Her study also explored ways to counter the stereotypes through educational strategies that make students feel that they belong, what drives children’s interest in STEM and the role of social connections. Her efforts resulted in millions of dollars in grants from the U.S. Department of Education’s Institute of Education Sciences, the National Science Foundation, and other organizations, according to UH.

Established by President Bill Clinton in 1996, PECASE recognizes innovative and far-reaching developments in science and technology, expands awareness of careers in STEM fields, enhances connections between research and its impacts on society, and highlights the importance of science and technology for our nation’s future.

“This is something that was on my radar, sort of like a ‘pie in the sky’ dream that it would be amazing to win it, but I didn’t know if it could ever be possible,” Master said. “I am very grateful to the University of Houston for providing such a supportive environment for innovation, collaboration and meaningful research that made this achievement possible.”

In addition to Master’s honor, the White House also recently recognized UH physics professor Donna Stokes for outstanding mentoring in STEM disciplines with the Presidential Awards for Excellence in Science, Mathematics and Engineering Mentoring.

Stokes’ previous awards include the UH Teaching Excellence Award, the 2023 UH Honors College Outstanding Fellowship Mentorship Award, the 2011 UH Provost Academic Advising and Mentoring Award, a National Science Foundation Career Award, and a National Research Council Post-Doctoral Associateship Award. The National Science Foundation manages the PAESMEM awards, and the White House Office of Science and Technology Policy selects honorees.

PAESMEM award recipients will receive $10,000 and the opportunity to attend professional development events in Washington, D.C.

“Spotlighting STEM educators, researchers and mentors is important to demonstrate the critical role they play in developing and encouraging students to pursue STEM degrees and careers,” Stokes said in a news release. “It is imperative to have STEM educators who can foster the next generation of scientists to address local and national scientific challenges.”
It's time to devote more attention and focus on closing the gender gap in STEM, according to this University of Houston expert. Graphic by Miguel Tovar/University of Houston

Houston innovators: Mentoring women in STEM should be your new year's resolution

Houston voices

Researchers and scientists can give girls a ‘leg up’.

According to Allison Master, assistant professor of psychological, health and learning sciences at the University of Houston: “Stereotypes that STEM [science, technology, engineering and math] is for boys begin in grade school, and by the time they reach high school, many girls have made their decision not to pursue degrees in computer science and engineering because they feel they don’t belong.”

Stats for STEM

The statistics are not encouraging. According to the U.S. Census: “Women made gains – from 8 percent of STEM workers in 1970 to 27 percent in 2019 – but men still dominated the field. Men made up 52 percent of all U.S. workers but 73 percent of all STEM workers.”

“But there are huge disparities between STEM fields in the representation of women,” said Master, whose new paper looks at the emergence of gender gaps among children and adolescents. “Fields like computer science (25 percent of computer jobs are held by women) and engineering (15 percent of engineering jobs are held by women) have some of the lowest percentages of women among STEM fields. On the other hand, women are overrepresented in health fields (74 percent of health-related jobs are held by women).”

Her research specifically looked at computer science and engineering fields. “We wanted to gain a better understanding of why there is such wide variation among STEM fields, and what we can do earlier in the pipeline to encourage more young girls to enter these fields.”

Off to an unfortunate start

“We find that children start to believe that boys are more interested than girls in engineering by age six (first grade), and that children start to believe that boys are more interested than girls in computer science by age eight (third grade). The more that young girls believe those stereotypes, the less interested they are in those fields,” said Master. “If girls believe they won’t belong in fields like computer science and engineering because those are fields ‘for boys,’ then they may miss out on opportunities to try those kinds of activities.”

Master decided to conduct a study on stereotyping gender roles.

“In one study, we told eight and nine year-old children about two computer science activities. When we told them that ‘girls are much less interested than boys’ in one of the activities, we found that girls became much less interested and less willing to try that activity (compared to another activity for which we told them ‘girls and boys are equally interested.’) These stereotypes can shape that choices that young girls make, opening or closing doors to different career pathways,” said Master.

Narrowing the gender gap

How do we turn this around? Mentoring elementary-age students is one way we can increase the percentage of girls who are ushered into STEM fields.

Stem Like a Girl is an initiative that aims to encourage young women to enter the STEM fields. Their website states: “We believe girls need to see strong women in STEM fields to feel supported in pursuing their own science and engineering interests.” An IBM initiative in India has a similar aim. There are lots of terrific organizations working to connect women in STEM as role models for younger girls (e.g., Society of Women Engineers, Black Girls Code, National Girls Collaborative Project, etc.),” Master adds.

Many higher education institutions hold STEM camps for girls exclusively. For instance, University of California-Davis has a program called STEM For Girls – which boasts a student demographic of 79 percent ethnic minorities. The University of Houston Hewlett Packard Enterprise Data Science Institute holds a summer camp each year called the Middle School Girls Coding Academy. This program is focused on middle school girls (rising 6th–8th graders) who learn Scratch, HTML, Game Design, and Python programming. The Academy runs another camp for high school-aged girls.

The big idea

It’s January – time for New Year’s resolutions. How about becoming a mentor or volunteering to give a presentation or teach a camp for young girls in STEM? Master goes on to say that even men in STEM should mentor young women.

“Role models are important because they help girls believe, ‘People like me can succeed,’ and ‘People like me belong here.’ But the most important thing that all role models can do (women and men, because men can also be very effective role models for girls in STEM) is to be relatable and make their work seem interesting and meaningful,” Master says.

So, does your institution have a program in robotics or coding just for girls? Or if you feel like you could benefit from a mentorship program yourself, you can apply at organizations like Harvard Women In Technology +. Harvard WIT+ helps to connect women early in their STEM careers with seasoned mentors.

------

This article originally appeared on the University of Houston's The Big Idea. Sarah Hill, the author of this piece, is the communications manager for the UH Division of Research.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Aegis Aerospace appoints Houston space leader as new president

moving up

Houston-based Aegis Aerospace's current chief strategy officer, Matt Ondler, will take on the additional role of president on Jan. 1. Ondler will succeed Bill Hollister, who is retiring.

“Matt's vision, experience, and understanding of our evolving markets position us to build on our foundation and pursue new frontiers,” Stephanie Murphy, CEO of Aegis Aerospace, said in a news release.

Hollister guided Aegis Aerospace through expansion and innovation in his three years as president, and will continue to serve in the role of chief technology officer (CTO) for six months and focus on the company's technical and intellectual property frameworks.

"Bill has played an instrumental role in shaping the success and growth of our company, and his contributions leave an indelible mark on both our culture and our achievements," Murphy said in a news release.

Ondler has a background in space hardware development and strategic leadership in government and commercial sectors. Ondler founded subsea robots and software company Houston Mechatronics, Inc., now known as Nauticus Robotics, and also served as president, CTO and CSO during a five-year tenure at Axiom Space. He held various roles in his 25 years at NASA and was also named to the Texas Aerospace Research and Space Economy Consortium Executive Committee last year.

"I am confident that with Matt at the helm as president and Bill supporting us as CTO, we will continue to build on our strong foundation and further elevate our impact in the space industry," Murphy said in a news release. "Matt's vision, experience, and understanding of our evolving markets position us to build on our foundation and pursue new frontiers."

Rice University launches new center to study roots of Alzheimer’s and Parkinson’s

neuro research

Rice University launched its new Amyloid Mechanism and Disease Center last month, which aims to uncover the molecular origins of Alzheimer’s, Parkinson’s and other amyloid-related diseases.

The center will bring together Rice faculty in chemistry, biophysics, cell biology and biochemistry to study how protein aggregates called amyloids form, spread and harm brain cells. It will serve as the neuroscience branch of the Rice Brain Institute, which was also recently established.

The team will work to ultimately increase its understanding of amyloid processes and will collaborate with the Texas Medical Center to turn lab discoveries into real progress for patients. It will hold its launch event on Jan. 21, 2026, and hopes to eventually be a launchpad for future external research funding.

The new hub will be led by Pernilla Wittung-Stafshed, a Rice biophysicist and the Charles W. Duncan Jr.-Welch Chair in Chemistry.

“To make a real difference, we have to go all the way and find a cure,” Wittung-Stafshede said in a news release. “At Rice, with the Amyloid Mechanism and Disease Center as a catalyst, we have the people and ideas to open new doors toward solutions.”

Wittung-Stafshede, who was recruited to Rice through a Cancer Prevention and Research Institute of Texas grant this summer, has led pioneering work on how metal-binding proteins impact neurodegenerative disorders, including Alzheimer’s and Parkinson’s diseases. Her most recent study, published in Advanced Science, suggests a new way of understanding how amyloids may harm cells and consume the brain’s energy molecule, ATP.

According to Alzheimer’s Disease International, neurodegenerative disease cases could reach around 78 million by 2030 and 139 million by 2050. Wittung-Stafshede’s father died of dementia several years ago.

“This is close to my heart,” Wittung-Stafshede added in the news release. “Neurodegenerative diseases such as dementia, Alzheimer’s and Parkinson’s are on the rise as people live longer, and age is the largest risk factor. It affects everyone.”

This Houston airport saw sharp passenger decline in 2025, study shows

Travel Talk

A new global airport travel study has revealed passenger traffic at Houston's William P. Hobby Airport (HOU) sharply decreased from 2024 to 2025.

The analysis from travel magazine LocalsInsider examined recently released data from the Bureau of Transportation Statistics (BTS), the U.S. International Trade Association, and a nationwide survey to determine the following American traveler habits: The most popular U.S. and international destinations, emerging hotspots, and destinations on the decline. The study covered passenger travel trends from January through July 2025.

In the report's ranking of the 40 U.S. airports with the sharpest declines in passenger traffic, HOU ranked 13th on the list.

About 4.26 million arrivals were reported at HOU from January through July 2024, compared to about 3.96 million during the same seven-month period in 2025. According to the data, that's a significant 7.1 percent drop in passenger traffic year-over-year, or a loss of 300,974 passengers.

"As travelers chase new hotspots, some destinations are seeing reduced passenger traffic whether due to rising costs, shifting airline schedules, or evolving traveler preferences, some destinations are seeing a decrease in visitors," the report's author wrote.

It appears most major Texas airports had drops in passenger traffic from 2024 to 2025. Dallas Love Field Airport (DAL) saw the worst in the state, with a dramatic 7.4 percent dip in arrivals. DAL also ranked 11th on the list of U.S. airports with the steepest declines in passenger traffic.

More than 5.13 million arrivals were reported at DAL from January through July 2024, compared to over 4.75 million during the same seven-month period in 2025.

This is how passenger traffic has fallen at other major Texas airports from 2024 to 2025:

Austin-Bergstrom International Airport (AUS):

  • 6,107,597 – Passenger arrivals from January to July 2024
  • 5,828,396 – Passenger arrivals from January to July 2025
  • -4.6 percent – Year-over-year passenger change
Dallas/Fort Worth International Airport (DFW):
  • 23,830,017 – Passenger arrivals from January to July 2024
  • 23,251,302 – Passenger arrivals from January to July 2025
  • -2.4 percent – Year-over-year passenger change

San Antonio International Airport (SAT):

  • 2,937,870 – Passenger arrivals from January to July 2024
  • 2,836,774 – Passenger arrivals from January to July 2025
  • -3.4 percent – Year-over-year passenger change
El Paso International Airport (ELP):
  • 1,094,431 – Passenger arrivals from January to July 2024
  • 1,076,845 – Passenger arrivals from January to July 2025
  • -1.6 percent – Year-over-year passenger change
---

This story originally appeared on CultureMap.com.