It's time to devote more attention and focus on closing the gender gap in STEM, according to this University of Houston expert. Graphic byMiguel Tovar/University of Houston

Researchers and scientists can give girls a ‘leg up’.

According to Allison Master, assistant professor of psychological, health and learning sciences at the University of Houston: “Stereotypes that STEM [science, technology, engineering and math] is for boys begin in grade school, and by the time they reach high school, many girls have made their decision not to pursue degrees in computer science and engineering because they feel they don’t belong.”

Stats for STEM

The statistics are not encouraging. According to the U.S. Census: “Women made gains – from 8 percent of STEM workers in 1970 to 27 percent in 2019 – but men still dominated the field. Men made up 52 percent of all U.S. workers but 73 percent of all STEM workers.”

“But there are huge disparities between STEM fields in the representation of women,” said Master, whose new paper looks at the emergence of gender gaps among children and adolescents. “Fields like computer science (25 percent of computer jobs are held by women) and engineering (15 percent of engineering jobs are held by women) have some of the lowest percentages of women among STEM fields. On the other hand, women are overrepresented in health fields (74 percent of health-related jobs are held by women).”

Her research specifically looked at computer science and engineering fields. “We wanted to gain a better understanding of why there is such wide variation among STEM fields, and what we can do earlier in the pipeline to encourage more young girls to enter these fields.”

Off to an unfortunate start

“We find that children start to believe that boys are more interested than girls in engineering by age six (first grade), and that children start to believe that boys are more interested than girls in computer science by age eight (third grade). The more that young girls believe those stereotypes, the less interested they are in those fields,” said Master. “If girls believe they won’t belong in fields like computer science and engineering because those are fields ‘for boys,’ then they may miss out on opportunities to try those kinds of activities.”

Master decided to conduct a study on stereotyping gender roles.

“In one study, we told eight and nine year-old children about two computer science activities. When we told them that ‘girls are much less interested than boys’ in one of the activities, we found that girls became much less interested and less willing to try that activity (compared to another activity for which we told them ‘girls and boys are equally interested.’) These stereotypes can shape that choices that young girls make, opening or closing doors to different career pathways,” said Master.

Narrowing the gender gap

How do we turn this around? Mentoring elementary-age students is one way we can increase the percentage of girls who are ushered into STEM fields.

Stem Like a Girl is an initiative that aims to encourage young women to enter the STEM fields. Their website states: “We believe girls need to see strong women in STEM fields to feel supported in pursuing their own science and engineering interests.” An IBM initiative in India has a similar aim. There are lots of terrific organizations working to connect women in STEM as role models for younger girls (e.g., Society of Women Engineers, Black Girls Code, National Girls Collaborative Project, etc.),” Master adds.

Many higher education institutions hold STEM camps for girls exclusively. For instance, University of California-Davis has a program called STEM For Girls – which boasts a student demographic of 79 percent ethnic minorities. The University of Houston Hewlett Packard Enterprise Data Science Institute holds a summer camp each year called the Middle School Girls Coding Academy. This program is focused on middle school girls (rising 6th–8th graders) who learn Scratch, HTML, Game Design, and Python programming. The Academy runs another camp for high school-aged girls.

The big idea

It’s January – time for New Year’s resolutions. How about becoming a mentor or volunteering to give a presentation or teach a camp for young girls in STEM? Master goes on to say that even men in STEM should mentor young women.

“Role models are important because they help girls believe, ‘People like me can succeed,’ and ‘People like me belong here.’ But the most important thing that all role models can do (women and men, because men can also be very effective role models for girls in STEM) is to be relatable and make their work seem interesting and meaningful,” Master says.

So, does your institution have a program in robotics or coding just for girls? Or if you feel like you could benefit from a mentorship program yourself, you can apply at organizations like Harvard Women In Technology +. Harvard WIT+ helps to connect women early in their STEM careers with seasoned mentors.

------

This article originally appeared on the University of Houston's The Big Idea. Sarah Hill, the author of this piece, is the communications manager for the UH Division of Research.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston engineers develop breakthrough device to advance spinal cord treatment

future of health

A team of Rice University engineers has developed an implantable probe over a hundred times smaller than the width of a hair that aims to help develop better treatments for spinal cord disease and injury.

Detailed in a recent study published in Cell Reports, the probe or sensor, known as spinalNET, is used to explore how neurons in the spinal cord process sensation and control movement, according to a statement from Rice. The research was supported by the National Institutes of Health, Rice, the California-based Salk Institute for Biological Studies, and the philanthropic Mary K. Chapman Foundation based in Oklahoma.

The soft and flexible sensor was used to record neuronal activity in freely moving mice with high resolution for multiple days. Historically, tracking this level of activity has been difficult for researchers because the spinal cord and its neurons move so much during normal activity, according to the team.

“We developed a tiny sensor, spinalNET, that records the electrical activity of spinal neurons as the subject performs normal activity without any restraint,” Yu Wu, a research scientist at Rice and lead author of the study said in a statement. “Being able to extract such knowledge is a first but important step to develop cures for millions of people suffering from spinal cord diseases.”

The team says that before now the spinal cord has been considered a "black box." But the device has already helped the team uncover new findings about the body's rhythmic motor patterns, which drive walking, breathing and chewing.

Lan Luan (from left), Yu Wu, and Chong Xie are working on the breakthrough device. Photo by Jeff Fitlow/Rice University

"Some (spinal neurons) are strongly correlated with leg movement, but surprisingly, a lot of neurons have no obvious correlation with movement,” Wu said in the statement. “This indicates that the spinal circuit controlling rhythmic movement is more complicated than we thought.”

The team said they hope to explore these findings further and aim to use the technology for additional medical purposes.

“In addition to scientific insight, we believe that as the technology evolves, it has great potential as a medical device for people with spinal cord neurological disorders and injury,” Lan Luan, an associate professor of electrical and computer engineering at Rice and a corresponding author on the study, added in the statement.

Rice researchers have developed several implantable, minimally invasive devices to address health and mental health issues.

In the spring, the university announced that the United States Department of Defense had awarded a four-year, $7.8 million grant to the Texas Heart Institute and a Rice team led by co-investigator Yaxin Wang to continue to break ground on a novel left ventricular assist device (LVAD) that could be an alternative to current devices that prevent heart transplantation.

That same month, the university shared news that Professor Jacob Robinson had published findings on minimally invasive bioelectronics for treating psychiatric conditions. The 9-millimeter device can deliver precise and programmable stimulation to the brain to help treat depression, obsessive-compulsive disorder and post-traumatic stress disorder.

Houston clean hydrogen startup to pilot tech with O&G co.

stay gold

Gold H2, a Houston-based producer of clean hydrogen, is teaming up with a major U.S.-based oil and gas company as the first step in launching a 12-month series of pilot projects.

The tentative agreement with the unnamed oil and gas company kicks off the availability of the startup’s Black 2 Gold microbial technology. The technology underpins the startup’s biotech process for converting crude oil into proprietary Gold Hydrogen.

The cleantech startup plans to sign up several oil and gas companies for the pilot program. Gold H2 says it’s been in discussions with companies in North America, Latin America, India, Eastern Europe and the Middle East.

The pilot program is aimed at demonstrating how Gold H2’s technology can transform old oil wells into hydrogen-generating assets. Gold H2, a spinout of Houston-based biotech company Cemvita, says the technology is capable of producing hydrogen that’s cheaper and cleaner than ever before.

“This business model will reshape the traditional oil and gas industry landscape by further accelerating the clean energy transition and creating new economic opportunities in areas that were previously dismissed as unviable,” Gold H2 says in a news release.

The start of the Black 2 Gold demonstrations follows the recent hiring of oil and gas industry veteran Prabhdeep Singh Sekhon as CEO.

“With the proliferation of AI, growth of data centers, and a national boom in industrial manufacturing underway, affordable … carbon-free energy is more paramount than ever,” says Rayyan Islam, co-founder and general partner at venture capital firm 8090 Industries, an investor in Gold H2. “We’re investing in Gold H2, as we know they’ll play a pivotal role in unleashing a new dawn for energy abundance in partnership with the oil industry.”

------

This article originally ran on EnergyCapital.

3 Houston innovators to know this week

who's who

Editor's note: Every week, I introduce you to a handful of Houston innovators to know recently making headlines with news of innovative technology, investment activity, and more. This week's batch includes an e-commerce startup founder, an industrial biologist, and a cellular scientist.

Omair Tariq, co-founder and CEO of Cart.com

Omair Tariq of Cart.com joins the Houston Innovators Podcast to share his confidence in Houston as the right place to scale his unicorn. Photo via Cart.com

Houston-based Cart.com, which operates a multichannel commerce platform, has secured $105 million in debt refinancing from investment manager BlackRock.

The debt refinancing follows a recent $25 million series C extension round, bringing Cart.com’s series C total to $85 million. The scaleup’s valuation now stands at $1.2 billion, making it one of the few $1 billion-plus “unicorns” in the Houston area.

Cart.com was co-founded by CEO Omair Tariq in October 2020. Read more.

Nádia Skorupa Parachin, vice president of industrial biotechnology at Cemvita

Nádia Skorupa Parachin joined Cemvita as vice president of industrial biotechnology. Photo courtesy of Cemvita

Houston-based biotech company Cemvita recently tapped two executives to help commercialize its sustainable fuel made from carbon waste.

Nádia Skorupa Parachin came aboard as vice president of industrial biotechnology, and Phil Garcia was promoted to vice president of commercialization.

Parachin most recently oversaw several projects at Boston-based biotech company Ginkjo Bioworks. She previously co-founded Brazilian biotech startup Integra Bioprocessos. Read more.

Han Xiao, associate professor of chemistry at Rice University

The funds were awarded to Han Xiao, a chemist at Rice University.

A Rice University chemist has landed a $2 million grant from the National Institute of Health for his work that aims to reprogram the genetic code and explore the role certain cells play in causing diseases like cancer and neurological disorders.

The funds were awarded to Han Xiao, the Norman Hackerman-Welch Young Investigator, associate professor of chemistry, from the NIH's Maximizing Investigators’ Research Award (MIRA) program, which supports medically focused laboratories. Xiao will use the five-year grant to advance his work on noncanonical amino acids.

“This innovative approach could revolutionize how we understand and control cellular functions,” Xiao said in the statement. Read more.