The five-year grant from NASA will go toward creating the NASA MIRO Inflatable Deployable Environments and Adaptive Space Systems Center at UH. Photo via UH.edu

The University of Houston was one of seven minority-serving institutions to receive a nearly $5 million grant this month to support aerospace research focused on extending human presence on the moon and Mars.

The $4,996,136 grant over five years is funded by the NASA Office of STEM Engagement Minority University Research and Education Project (MUREP) Institutional Research Opportunity (MIRO) program. It will go toward creating the NASA MIRO Inflatable Deployable Environments and Adaptive Space Systems (IDEAS2) Center at UH, according to a statement from the university.

“The vision of the IDEAS2 Center is to become a premier national innovation hub that propels NASA-centric, state-of-the-art research and promotes 21st-century aerospace education,” Karolos Grigoriadis, Moores Professor of Mechanical Engineering and director of aerospace engineering at UH, said in a statement.

Another goal of the grant is to develop the next generation of aerospace professionals.

Graduate, undergraduate and even middle and high school students will conduct research out of IDEAS2 and work closely with the Johnson Space Center, located in the Houston area.

The center will collaborate with Texas A&M University, Houston Community College, San Jacinto College and Stanford University.

Grigoriadis will lead the center. Dimitris Lagoudas, from Texas A&M University, and Olga Bannova, UH's research professor of Mechanical Engineering and director of the Space Architecture graduate program, will serve as associate directors.

"Our mission is to establish a sustainable nexus of excellence in aerospace engineering research and education supported by targeted multi-institutional collaborations, strategic partnerships and diverse educational initiatives,” Grigoriadis said.

Industrial partners include Boeing, Axiom Space, Bastion Technologies and Lockheed Martin, according to UH.

UH is part of 21 higher-education institutions to receive about $45 million through NASA MUREP grants.

According to NASA, the six other universities to received about $5 million MIRO grants over five years and their projects includes:

  • Alaska Pacific University in Anchorage: Alaska Pacific University Microplastics Research and Education Center
  • California State University in Fullerton: SpaceIgnite Center for Advanced Research-Education in Combustion
  • City University of New York, Hunter College in New York: NASA-Hunter College Center for Advanced Energy Storage for Space
  • Florida Agricultural and Mechanical University in Tallahassee: Integrative Space Additive Manufacturing: Opportunities for Workforce-Development in NASA Related Materials Research and Education
  • New Jersey Institute of Technology in Newark:AI Powered Solar Eruption Center of Excellence in Research and Education
  • University of Illinois in Chicago: Center for In-Space Manufacturing: Recycling and Regolith Processing

Fourteen other institutions will receive up to $750,000 each over the course of a three-year period. Those include:

  • University of Mississippi
  • University of Alabama in Huntsville
  • Louisiana State University in Baton Rouge
  • West Virginia University in Morgantown
  • University of Puerto Rico in San Juan
  • Desert Research Institute, Reno, Nevada
  • Oklahoma State University in Stillwater
  • Iowa State University in Ames
  • University of Alaska Fairbanks in Fairbanks
  • University of the Virgin Islands in Charlotte Amalie
  • University of Hawaii at Manoa in Honolulu
  • University of Idaho in Moscow
  • University of Arkansas in Little Rock
  • South Dakota School of Mines and Technology in Rapid City
  • Satellite Datastreams

NASA's MUREP hosted its annual "Space Tank" pitch event at Space Center Houston last month. Teams from across the country — including three Texas teams — pitched business plans based on NASA-originated technology. Click here to learn more about the seven finalists.

Tim Neal is the new CEO of AmPd Labs, a unique additive manufacturing startup in Houston. Photo via LinkedIn

Exclusive: Houston additive manufacturing startup names new CEO

at the helm

As of last week, Tim Neal has a new job.

The Houston entrepreneur joined next-generation additive manufacturing company AmPd Labs founded by Sean Harkins and Brien Beach. Neal now serves as CEO of the company. He formerly served as co-founder and CEO of GoExpedi, a Houston-based industrial procurement solutions company.

Neal tells InnovationMap that he'd always been interested in the additive manufacturing sector, and sees a lot of potential for AmPd Labs in the industrial world in Houston — now more than ever.

“Within additive manufacturing, a lot of people focus on the medical and the aerospace sectors, but the industrial sector has been largely overlooked. Being in Houston, that really resonates,” Neal says. “The technology is now at a place that it can be at this production scale.”

The AmPd Labs facility, located in the Heights, works with its industrial clients through the entire life cycle — from initial design, fit and function, and onward. Neal says that what AmPd Labs provides for its customers is this comprehensive support at a rapid pace and in a nearshore capacity.

“We see a vision of ourselves as a digital manufacturing firm for manufacturers," he says. “The ability to very rapidly hard-to-make products and save that time, but also removing obsolete parts."

Additionally, AmPd Labs has a zero-waste process and can help its industrial clients with their ESG goals. The materials the company uses can be recycled and used again, Neal says.

"A lot of large industrial firms in Houston are focused on this new energy revolution, and that requires new technologies," he explains. "Many of these parts are hard to make."

Neal says he's sat on every side of the arena at this point, and he's bringing his background, including his experience with scaling a startup, to the table.

“We are big believers in the Houston economy," he says. "While the market might disagree at times, the green economy starts in Houston — the infrastructure is here, the companies wanting and needing to make that change are here.”

Two innovators are bringing additive manufacturing opportunities to Houston. Image via Getty Images

New venture brings next-generation additive manufacturing to Houston

new to hou

Last year, Sean Harkins introduced his friend Brien Beach to the world of additive manufacturing, and together the duo saw a business opportunity not only for themselves — but also for all of Houston.

Harkins had been working in 3D printing and additive manufacturing — the process of creating an object by building it one layer at a time — for the last decade and studied industrial design at the University of Houston. Working together, Harkins and Beach launched AmPd Labs, Houston’s next-generation additive manufacturing facility for industrial design and production.

“I met Brien through a mutual friend and we started discussing this idea of an additive manufacturing center in Houston,” says Harkins, president of AmPd Labs.

AmPD Lab’s focus is to break down traditional engineering design constraints, forcing the question “can this be additively manufactured?” The facility uniquely enables the printing of metals through metal binder jetting technology.

Last week, the company opened its first dedicated space near the Heights that was built to be the production studio as well as a place to bring in potential partners interested in additive manufacturing.

“There is a hill to climb with market acceptance, but we want to be the champions of that and Houston is just a great place to start this because it's the largest industrial city in America and there's so much industry here and there's tons of engineers in this community,” says Beach. “Houston is such a business-forward place. A ‘how can I help you’ type of business place.”

In addition to the launch of the new facility, Beach and Harkins visualize they will soon create a trade-school-type concept of “Digital Craftsmen” for additive manufacturing and offer an educational platform to help build a skilled workforce in this space.

“AM is not a fit for everything, but by working together, we can find those parts and products in which an AM solution can give you an operational or competitive advantage,” says Beach. “We will work with you through the design process, provide samples for testing, work through parts quality and qualification, and eventually find some products that you can permanently implement into your business.”

AmPd Labs will focus its business on these dedicated areas of impact:

  • Manufacturing technology choice
  • Part design
  • Material selection
  • Material performance
  • Assembly and workflow assessment
  • Business model impact
  • Supply chain impact
  • Increased data generation
  • Sales and marketing approach

Sean Harkins and Brien Beach opened AmPd Labs' space in the Heights last week. Images via ampdlabs.llc

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Booming Houston suburb, other Texas towns among the fastest-growing U.S. cities in 2023

by the numbers

One Houston suburb experienced one of the most rapid growth spurts in the country last year: Fulshear, whose population grew by 25.6 percent, more than 51 times that of the nation’s growth rate of 0.5 percent. The city's population was 42,616 as of July 1, 2023.

According to U.S. Census Bureau's Vintage 2023 Population Estimates, released Thursday, May 16, Fulshear — which lies west of Katy in northwest Fort Bend County - ranked No. 2 on the list of fastest-growing cities with a population of 20,000 or more. It's no wonder iconic Houston restaurants like Molina's Cantina see opportunities there.

The South still dominates the nation's growth, even as America’s Northeast and Midwest cities are rebounding slightly from years of population drops. The census estimates showed 13 of the 15 fastest-growing cities in the U.S. were in the South — eight in Texas alone.

The Texas cities joining Fulshear on the fastest-growing-cities list are:

  • Celina (No. 1) with 26.6 percent growth (42,616 total population)
  • Princeton (No. 3) with 22.3 percent growth (28,027 total population)
  • Anna (No. 4) with 16.9 percent growth (27,501 total population)
  • Georgetown (No. 8) with 10.6 percent growth (96,312 total population)
  • Prosper (No. 9) with 10.5 percent growth (41,660 total population)
  • Forney (No. 10) with 10.4 percent growth (35,470 total population)
  • Kyle (No. 11) with 9 percent growth (62,548 total population)

Texas trends
San Antonio saw the biggest growth spurt in the United States last year, numbers-wise. The Alamo City added about 22,000 residents. San Antonio now has nearly 1.5 million people, making it the the seventh largest city in the U.S. and second largest in Texas.

Its population boom was followed by those of other Southern cities, including Fort Worth; Charlotte, North Carolina; Jacksonville, Florida; and Port St. Lucie, Florida.

Fast-growing Fort Worth (978,000) surpassed San Jose, California (970,000) to become the 12th most populous city in the country.

Meanwhile, population slowed in the Austin area. Jacksonville, Florida (986,000), outpaced Austin (980,000), pushing the Texas capital to 11th largest city in the U.S. (barely ahead of Fort Worth).

Population growth in Georgetown, outside Austin, slowed by more than one-fourth its population growth in 2022, the report says, from 14.4 percent to 10.6 percent. It's the same story in the Central Texas city of Kyle, whose population growth decreased by nearly 2 percent to 9 percent in 2023.

Most populated cities
New York City with nearly 8.3 million people remained the nation's largest city in population as of July 1, 2023. Los Angeles was second at close to 4 million residents, while Chicago was third at 2.7 million and Houston was fourth at 2.3 million residents.

The 15 populous U.S. cities in 2023 were:

  1. New York, New York (8.3 million)
  2. Los Angeles, California (4 million)
  3. Chicago, Illinois (2.7 million)
  4. Houston, Texas (2.3 million)
  5. Phoenix, Arizona (1.7 million)
  6. Philadelphia, Pennsylvania (1.6 million)
  7. San Antonio (1.5 million)
  8. San Diego, California (1.4 million)
  9. Dallas (1.3 million)
  10. Jacksonville, Florida (986,000)
  11. Austin (980,000)
  12. Fort Worth (978,000)
  13. San Jose (970,000)
  14. Columbus, Ohio (913,000)
  15. Charlotte, North Carolina (911,000)

Modest reversals of population declines were seen last year in large cities in the nation's Northeast and Midwest. Detroit, for example, which grew for the first time in decades, had seen an exodus of people since the 1950s. Yet the estimates released Thursday show the population of Michigan’s largest city rose by just 1,852 people from 631,366 in 2022 to 633,218 last year.

It's a milestone for Detroit, which had 1.8 million residents in the 1950s only to see its population dwindle and then plummet through suburban white flight, a 1967 race riot, the migration to the suburbs by many of the Black middle class and the national economic downturn that foreshadowed the city's 2013 bankruptcy filing.

Three of the largest cities in the U.S. that had been bleeding residents this decade staunched those departures somewhat. New York City, which has lost almost 550,000 residents this decade so far, saw a drop of only 77,000 residents last year, about three-fifths the numbers from the previous year.

Los Angeles lost only 1,800 people last year, following a decline in the 2020s of almost 78,000 residents. Chicago, which has lost almost 82,000 people this decade, only had a population drop of 8,200 residents last year.

And San Francisco, which has lost a greater share of residents this decade than any other big city — almost 7.5 percent — actually grew by more than 1,200 residents last year.

------

This article originally ran on CultureMap.

How this Houston clean energy entrepreneur is navigating geothermal's hype to 100x business growth

houston innovators podcast Episode 237

Geothermal energy has been growing in recognition as a major player in the clean energy mix, and while many might think of it as a new climatetech solution, Tim Latimer, co-founder and CEO of Fervo Energy, knows better.

"Every overnight success is a decade in the making, and I think Fervo, fortunately — and geothermal as a whole — has become much more high profile recently as people realize that it can be a tremendous solution to the challenges that our energy sector and climate are facing," he says on the Houston Innovators Podcast.

In fact, Latimer has been bullish on geothermal as a clean energy source since he quit his job as a drilling engineer in oil and gas to pursue a dual degree program — MBA and master's in earth sciences — at Stanford University. He had decided that, with the reluctance of incumbent energy companies to try new technologies, he was going to figure out how to start his own company. Through the Stanford program and Activate, a nonprofit hardtech program that funded two years of Fervo's research and development, Latimer did just that.

And the bet has more than paid off. Since officially launching in 2017, Fervo Energy has raised over $430 million — most recently collecting a $244 million series D round. Even more impressive to Latimer — his idea for drilling horizontal wells works. The company celebrated a successful pilot program last summer by achieving continuous carbon-free geothermal energy production with Project Red, a northern Nevada site made possible through a 2021 partnership with Google.

Next up for Fervo is growing and scaling at around a 100x pace. While Project Red included three wells, Project Cape, a Southwest Utah site, will include around 100 wells with significantly reduced drilling cost and an estimated 2026 delivery. Latimer says there are a dozen other projects like Project Cape that are in the works.

"It's a huge ramp up in our drilling, construction, and powerplant programs from our pilot project, but we've already had tremendous success there," Latimer says of Project Cape. "We think our technology has a really bright future."

While Latimer looks ahead to the rapid growth of Fervo Energy, he says it's all due to the foundation he put in place for the company, which has a culture built on the motto, "Build things that last."

“You’re not going to get somewhere that really changes the world by cutting corners and taking short steps. And, if you want to move the needle on something as complicated as the global energy system that has been built up over hundreds of years with trillions of dollars of capital invested in it – you’re not going to do it overnight," he says on the show. "We’re all in this for the long haul together."

Houston researchers create AI model to tap into how brain activity relates to illness

brainiac

Houston researchers are part of a team that has created an AI model intended to understand how brain activity relates to behavior and illness.

Scientists from Baylor College of Medicine worked with peers from Yale University, University of Southern California and Idaho State University to make Brain Language Model, or BrainLM. Their research was published as a conference paper at ICLR 2024, a meeting of some of deep learning’s greatest minds.

“For a long time we’ve known that brain activity is related to a person’s behavior and to a lot of illnesses like seizures or Parkinson’s,” Dr. Chadi Abdallah, associate professor in the Menninger Department of Psychiatry and Behavioral Sciences at Baylor and co-corresponding author of the paper, says in a press release. “Functional brain imaging or functional MRIs allow us to look at brain activity throughout the brain, but we previously couldn’t fully capture the dynamic of these activities in time and space using traditional data analytical tools.

"More recently, people started using machine learning to capture the brain complexity and how it relates it to specific illnesses, but that turned out to require enrolling and fully examining thousands of patients with a particular behavior or illness, a very expensive process,” Abdallah continues.

Using 80,000 brain scans, the team was able to train their model to figure out how brain activities related to one another. Over time, this created the BrainLM brain activity foundational model. BrainLM is now well-trained enough to use to fine-tune a specific task and to ask questions in other studies.

Abdallah said that using BrainLM will cut costs significantly for scientists developing treatments for brain disorders. In clinical trials, it can cost “hundreds of millions of dollars,” he said, to enroll numerous patients and treat them over a significant time period. By using BrainLM, researchers can enroll half the subjects because the AI can select the individuals most likely to benefit.

The team found that BrainLM performed successfully in many different samples. That included predicting depression, anxiety and PTSD severity better than other machine learning tools that do not use generative AI.

“We found that BrainLM is performing very well. It is predicting brain activity in a new sample that was hidden from it during the training as well as doing well with data from new scanners and new population,” Abdallah says. “These impressive results were achieved with scans from 40,000 subjects. We are now working on considerably increasing the training dataset. The stronger the model we can build, the more we can do to assist with patient care, such as developing new treatment for mental illnesses or guiding neurosurgery for seizures or DBS.”

For those suffering from neurological and mental health disorders, BrainLM could be a key to unlocking treatments that will make a life-changing difference.