A new innovation out of the Texas Medical Center's Biodesign Program is enhancing efficacy of a life-saving aortic aneurysm rupture procedure. Photo via Getty Images

Yes, you can die of a broken heart — although it's not in the hyperbolic way you might be thinking. Fewer than 20 percent of people who have an aortic aneurysm rupture survive the event. But aortic aneurysms can be treated if they’re caught before they burst. A new Houston company is devoted to a novel solution to helping patients with abdominal aortic aneurysms (AAA).

That company is Taurus Vascular. As part of the current class of the TMC Innovation Biodesign Program, fellows Matthew Kuhn and Melanie Lowther were tasked with creating a biomedical company in a year. The founders started their journey last August. At the end of this month, they'll be kicked out of the nest, Kuhn tells InnovationMap. Taurus is also in Rice University's 2023 cohort of OwlSpark, an ongoing summer program for startups founders from the Rice community.

Kuhn is a biomedical engineer who just scored his forty-fifth patent. The CEO says that he hit it off quickly with his co-founder and COO, Lowther, former director entrepreneurship and innovation at Texas Children’s Hospital.

Matthew Kuhn and Melanie Lowther co-founded Taurus Vascular as TMC Biodesign fellows. Photos via taurusvascular.com

Members of the Biodesign Program are paid a livable stipend to devote themselves fully to creating a pioneering company. Kuhn says that he became interested in finding a more effective way to heal AAAs during his four and a half years as a project leader at the Center for Device Innovation at the Texas Medical Center.

“It was ripe for innovation and we landed on a concept of some merit,” he says.

The current standard of care for AAAs is EVAR, or endovascular aneurysm repair, in which a surgeon inserts a stent to relieve pressure on the aneurysm.

“It used to be if you had a AAA, you had a gnarly procedure,” he says, which included a large incision across the abdomen. EVAR eliminated that, but its problem is that it often results in endoleaks. As many as 20 percent of patients need another EVAR within five years.

Taurus Vascular’s technology improves on EVAR by placing a self-deploying stent to create a drainage pathway between the high-pressure aneurysm sac and a low-pressure nearby vein — mitigating the adverse impact of endoleaks that would otherwise cause the aneurysm to continue to grow. The simple solution will allow patients to live longer, healthier lives after their procedure.

Kuhn says that being in Houston has been and will continue to be instrumental in his company’s success. Part of that, of course, is his relatively cosseted status as a founder in the Innovation Biodesign Program. But he says that the industry as a whole has become almost like a family.

“It feels very different from startup life for other industries where it feels competitive,” he explains. "You have to be a little crazy to start a medical device company and there’s a sense that we’re all in the same boat. People are so generous with their time to share resources. I feels like I have 100 co-founders."

Following the end of Taurus Vascular’s time in the program that helped conceived it, its founders will remain in the same building, continuing to work to support their technology. The next step is raising a seed round that will pay for the company’s chronic animal studies. Because Taurus Vascular is producing a Class III medical device, its approval process to get to market is the most stringent the FDA has.

The goal is to be commercial by 2030, says Kuhn. By then, Taurus Vascular will have healed many a heart.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

MD Anderson makes AI partnership to advance precision oncology

AI Oncology

Few experts will disagree that data-driven medicine is one of the most certain ways forward for our health. However, actually adopting it comes at a steep curve. But what if using the technology were democratized?

This is the question that SOPHiA GENETICS has been seeking to answer since 2011 with its universal AI platform, SOPHiA DDM. The cloud-native system analyzes and interprets complex health care data across technologies and institutions, allowing hospitals and clinicians to gain clinically actionable insights faster and at scale.

The University of Texas MD Anderson Cancer Center has just announced its official collaboration with SOPHiA GENETICS to accelerate breakthroughs in precision oncology. Together, they are developing a novel sequencing oncology test, as well as creating several programs targeted at the research and development of additional technology.

That technology will allow the hospital to develop new ways to chart the growth and changes of tumors in real time, pick the best clinical trials and medications for patients and make genomic testing more reliable. Shashikant Kulkarni, deputy division head for Molecular Pathology, and Dr. J. Bryan, assistant professor, will lead the collaboration on MD Anderson’s end.

“Cancer research has evolved rapidly, and we have more health data available than ever before. Our collaboration with SOPHiA GENETICS reflects how our lab is evolving and integrating advanced analytics and AI to better interpret complex molecular information,” Dr. Donna Hansel, division head of Pathology and Laboratory Medicine at MD Anderson, said in a press release. “This collaboration will expand our ability to translate high-dimensional data into insights that can meaningfully advance research and precision oncology.”

SOPHiA GENETICS is based in Switzerland and France, and has its U.S. offices in Boston.

“This collaboration with MD Anderson amplifies our shared ambition to push the boundaries of what is possible in cancer research,” Dr. Philippe Menu, chief product officer and chief medical officer at SOPHiA GENETICS, added in the release. “With SOPHiA DDM as a unifying analytical layer, we are enabling new discoveries, accelerating breakthroughs in precision oncology and, most importantly, enabling patients around the globe to benefit from these innovations by bringing leading technologies to all geographies quickly and at scale.”

Houston company plans lunar mission to test clean energy resource

lunar power

Houston-based natural resource and lunar development company Black Moon Energy Corporation (BMEC) announced that it is planning a robotic mission to the surface of the moon within the next five years.

The company has engaged NASA’s Jet Propulsion Laboratory (JPL) and Caltech to carry out the mission’s robotic systems, scientific instrumentation, data acquisition and mission operations. Black Moon will lead mission management, resource-assessment strategy and large-scale operations planning.

The goal of the year-long expedition will be to gather data and perform operations to determine the feasibility of a lunar Helium-3 supply chain. Helium-3 is abundant on the surface of the moon, but extremely rare on Earth. BMEC believes it could be a solution to the world's accelerating energy challenges.

Helium-3 fusion releases 4 million times more energy than the combustion of fossil fuels and four times more energy than traditional nuclear fission in a “clean” manner with no primary radioactive products or environmental issues, according to BMEC. Additionally, the company estimates that there is enough lunar Helium-3 to power humanity for thousands of years.

"By combining Black Moon's expertise in resource development with JPL and Caltech's renowned scientific and engineering capabilities, we are building the knowledge base required to power a new era of clean, abundant, and affordable energy for the entire planet," David Warden, CEO of BMEC, said in a news release.

The company says that information gathered from the planned lunar mission will support potential applications in fusion power generation, national security systems, quantum computing, radiation detection, medical imaging and cryogenic technologies.

Black Moon Energy was founded in 2022 by David Warden, Leroy Chiao, Peter Jones and Dan Warden. Chiao served as a NASA astronaut for 15 years. The other founders have held positions at Rice University, Schlumberger, BP and other major energy space organizations.

Houston co. makes breakthrough in clean carbon fiber manufacturing

Future of Fiber

Houston-based Mars Materials has made a breakthrough in turning stored carbon dioxide into everyday products.

In partnership with the Textile Innovation Engine of North Carolina and North Carolina State University, Mars Materials turned its CO2-derived product into a high-quality raw material for producing carbon fiber, according to a news release. According to the company, the product works "exactly like" the traditional chemical used to create carbon fiber that is derived from oil and coal.

Testing showed the end product met the high standards required for high-performance carbon fiber. Carbon fiber finds its way into aircraft, missile components, drones, racecars, golf clubs, snowboards, bridges, X-ray equipment, prosthetics, wind turbine blades and more.

The successful test “keeps a promise we made to our investors and the industry,” Aaron Fitzgerald, co-founder and CEO of Mars Materials, said in the release. “We proved we can make carbon fiber from the air without losing any quality.”

“Just as we did with our water-soluble polymers, getting it right on the first try allows us to move faster,” Fitzgerald adds. “We can now focus on scaling up production to accelerate bringing manufacturing of this critical material back to the U.S.”

Mars Materials, founded in 2019, converts captured carbon into resources, such as carbon fiber and wastewater treatment chemicals. Investors include Untapped Capital, Prithvi Ventures, Climate Capital Collective, Overlap Holdings, BlackTech Capital, Jonathan Azoff, Nate Salpeter and Brian Andrés Helmick.

---

This article originally appeared on our sister site, EnergyCapitalHTX.com.