A new innovation out of the Texas Medical Center's Biodesign Program is enhancing efficacy of a life-saving aortic aneurysm rupture procedure. Photo via Getty Images

Yes, you can die of a broken heart — although it's not in the hyperbolic way you might be thinking. Fewer than 20 percent of people who have an aortic aneurysm rupture survive the event. But aortic aneurysms can be treated if they’re caught before they burst. A new Houston company is devoted to a novel solution to helping patients with abdominal aortic aneurysms (AAA).

That company is Taurus Vascular. As part of the current class of the TMC Innovation Biodesign Program, fellows Matthew Kuhn and Melanie Lowther were tasked with creating a biomedical company in a year. The founders started their journey last August. At the end of this month, they'll be kicked out of the nest, Kuhn tells InnovationMap. Taurus is also in Rice University's 2023 cohort of OwlSpark, an ongoing summer program for startups founders from the Rice community.

Kuhn is a biomedical engineer who just scored his forty-fifth patent. The CEO says that he hit it off quickly with his co-founder and COO, Lowther, former director entrepreneurship and innovation at Texas Children’s Hospital.

Matthew Kuhn and Melanie Lowther co-founded Taurus Vascular as TMC Biodesign fellows. Photos via taurusvascular.com

Members of the Biodesign Program are paid a livable stipend to devote themselves fully to creating a pioneering company. Kuhn says that he became interested in finding a more effective way to heal AAAs during his four and a half years as a project leader at the Center for Device Innovation at the Texas Medical Center.

“It was ripe for innovation and we landed on a concept of some merit,” he says.

The current standard of care for AAAs is EVAR, or endovascular aneurysm repair, in which a surgeon inserts a stent to relieve pressure on the aneurysm.

“It used to be if you had a AAA, you had a gnarly procedure,” he says, which included a large incision across the abdomen. EVAR eliminated that, but its problem is that it often results in endoleaks. As many as 20 percent of patients need another EVAR within five years.

Taurus Vascular’s technology improves on EVAR by placing a self-deploying stent to create a drainage pathway between the high-pressure aneurysm sac and a low-pressure nearby vein — mitigating the adverse impact of endoleaks that would otherwise cause the aneurysm to continue to grow. The simple solution will allow patients to live longer, healthier lives after their procedure.

Kuhn says that being in Houston has been and will continue to be instrumental in his company’s success. Part of that, of course, is his relatively cosseted status as a founder in the Innovation Biodesign Program. But he says that the industry as a whole has become almost like a family.

“It feels very different from startup life for other industries where it feels competitive,” he explains. "You have to be a little crazy to start a medical device company and there’s a sense that we’re all in the same boat. People are so generous with their time to share resources. I feels like I have 100 co-founders."

Following the end of Taurus Vascular’s time in the program that helped conceived it, its founders will remain in the same building, continuing to work to support their technology. The next step is raising a seed round that will pay for the company’s chronic animal studies. Because Taurus Vascular is producing a Class III medical device, its approval process to get to market is the most stringent the FDA has.

The goal is to be commercial by 2030, says Kuhn. By then, Taurus Vascular will have healed many a heart.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Axiom Space-tested cancer drug advances to clinical trials

mission critical

A cancer-fighting drug tested aboard several Axiom Space missions is moving forward to clinical trials.

Rebecsinib, which targets a cancer cloning and immune evasion gene, ADAR1, has received FDA approval to enter clinical trials under active Investigational New Drug (IND) status, according to a news release. The drug was tested aboard Axiom Mission 2 (Ax-2) and Axiom Mission 3 (Ax-3). It was developed by Aspera Biomedicine, led by Dr. Catriona Jamieson, director of the UC San Diego Sanford Stem Cell Institute (SSCI).

The San Diego-based Aspera team and Houston-based Axiom partnered to allow Rebecsinib to be tested in microgravity. Tumors have been shown to grow more rapidly in microgravity and even mimic how aggressive cancers can develop in patients.

“In terms of tumor growth, we see a doubling in growth of these little mini-tumors in just 10 days,” Jamieson explained in the release.

Rebecsinib took part in the patient-derived tumor organoid testing aboard the International Space Station. Similar testing is planned to continue on Axiom Station, the company's commercial space station that's currently under development.

Additionally, the drug will be tested aboard Ax-4 under its active IND status, which was targeted to launch June 25.

“We anticipate that this monumental mission will inform the expanded development of the first ADAR1 inhibitory cancer stem cell targeting drug for a broad array of cancers," Jamieson added.

According to Axiom, the milestone represents the potential for commercial space collaborations.

“We’re proud to work with Aspera Biomedicines and the UC San Diego Sanford Stem Cell Institute, as together we have achieved a historic milestone, and we’re even more excited for what’s to come,” Tejpaul Bhatia, the new CEO of Axiom Space, said in the release. “This is how we crack the code of the space economy – uniting public and private partners to turn microgravity into a launchpad for breakthroughs.”