A recap of all the innovation happening at the Texas Medical Center, innovators to know, and Houston startup news trended this week. Courtesy of TMC

Editor's note: This week was full of innovation events — and there's many more coming up this month. Event coverage, innovators to know, and more startup news trended on InnovationMap this week.

3 Houston innovators to know this week

Meet this week's Houston innovators to know. Courtesy photos

This week, some key Houston innovators to know include the CEO of a tech company that's demystifying Google's SEO, a local entrepreneur who just raised millions in funding, and the newest addition to the Houston innovation ecosystem. Continue reading.

From robots to immunotherapy, TMC talks innovation at its annual address

The Texas Medical Center's CEO, Bill McKeon, ran down a list of exciting updates and innovations from the organization's member institutions at the annual State of the TMC. Photo via tmc.edu

In the Greater Houston Partnership's annual State of the Texas Medical Center address, TMC CEO Bill McKeon shared a status update of sorts for all the goings on at the largest medical center in the world.

McKeon ran down the list of member institutions to briefly touch base on each organization's innovations and growth. In the address, which took place at the Marriott Marquis on October 31, McKeon discussed exciting construction projects, new accelerator programs, and more. Continue reading.

Exclusive: The Cannon Houston restructures, brings on new executive to lead operations

Just after celebrating its new 200,000-square-foot flagship location, The Cannon Houston has named a new CEO to further grow the coworking space and startup hub. Photo courtesy of The Cannon

After celebrating the opening its flagship coworking space the same week it announced another location in downtown, startup hub and coworking company, The Cannon Houston, has another big announcement: a new CEO.

A former global consultant for KPMG, Jon Lambert has been named The Cannon's CEO. He will also support day-to-day operations at The Cannon's three locations. Meanwhile, Lawson Gow, founder of the company and former CEO, will move to president of The Cannon. Gow, who is the son of InnovationMap's parent company's CEO, will focus on partnerships and business development, as well as continuing to be the face of the company. Continue reading.

Houston biomedical startup granted $1.5M, Chevron taps into Plug and Play, and more innovation news

Money moves, big deals, and more lead this roundup of innovation news. Pexels

Hitting headlines this month are innovation news stories from battling the opioid crisis and funding to TMCx companies and Houston as a whole earning recognition. In this innovation news roundup, two Houston startups pocket some cash, Chevron links up with Plug and Play, and more. Continue reading.

10+ can't-miss Houston business and innovation events for November

From enlightening talks and conventions to networking opportunities, here's where you need to be in November. Getty Images

Looking for some help navigating an innovation-filled month in Houston? Look no further.

November is jam packed with Houston business and innovation events — from huge conventions like SpaceCom and Global Corporate Venture taking over downtown on the same days to the Digital Fight Club battling it out in Houston for the first time and The Houston Innovation Summit planning a week of programming. Continue reading.

A new robotics facility is headed for the TMC Innovation Institute. Courtesy of TMC

TMC plans to open one-of-its-kind robotics facility later this year

The robots are coming

The Texas Medical Center has announced its plans to open a new robotics-equipped laboratory in October of this year. The automation capabilities will allow for more efficient lab tests and services.

The new facility is being made possible by a partnership between the medical center, TMC Innovation Institute, and ABB, a leading robotics company. This would be Zürich-based ABB's first dedicated health care center, but the company has over 400,000 robotics products across industries in over 53 countries.

"The next-generation laboratory processes developed in Houston will speed manual medical laboratory processes, reducing and eliminating bottlenecks in laboratory work and enhancing safety and consistency," says Sami Atiya, president of ABB's Robotics and Discrete Automation business, in a news release. "This is especially applicable for new high-tech treatments, such as the cancer therapies pioneered at the Texas Medical Center, which today require manual and time-consuming test processes."

A team of 20 will work out of the 5,300-square-foot facility, which will be located in TMC Innovation Institute. The space will have an automation laboratory with robot training facilities, and meeting spaces for the human innovation partners.

Currently, ABB's robots specialize in food and beverage laboratories worldwide, but able to adapt to medical facilities for specific tasks, including "dosing, mixing, and pipetting tasks, as well as sterile instrument kitting and centrifuge loading and unloading," according to the release.

"We are proud to co-develop collaborative robotics systems for the hospital of the future with one of the world's most advanced partners and to test them in real-world laboratories to ensure they add value to healthcare professionals, driving innovation, and transforming how medical laboratories operate worldwide," says Atiya in the release.

According to the release, TMC's connection to innovation, startups, and researchers were key factors in bringing the facility to Houston. ABB Robotics has a long-term plan to invest and innovate in robotics, says Atiya in the release.

"The Texas Medical Center continues to push the boundaries of innovation with cutting-edge industry partners by establishing TMC as the epicenter for ABB Robotics' entry into the healthcare space," says Bill McKeon, president and CEO of Texas Medical Center, in the release. "We continually strive for opportunities to accelerate research and enhance clinical care through key strategic partnerships. ABB's move into the heart of the Texas Medical Center campus with this first-of-its-kind R&D facility for creating robotics solutions in healthcare will set a new course for advancements in medicine."

Automation nation

Courtesy of TMC

A team of 20 will work out of the 5,300-square-foot facility, which will be located in TMC Innovation Institute.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston wearable biosensing company closes $13M pre-IPO round

fresh funding

Wellysis, a Seoul, South Korea-headquartered wearable biosensing company with its U.S. subsidiary based in Houston, has closed a $13.5 million pre-IPO funding round and plans to expand its Texas operations.

The round was led by Korea Investment Partners, Kyobo Life Insurance, Kyobo Securities, Kolon Investment and a co-general partner fund backed by SBI Investment and Samsung Securities, according to a news release.

Wellysis reports that the latest round brings its total capital raised to about $30 million. The company is working toward a Korea Securities Dealers Automated Quotations listing in Q4 2026 or Q1 2027.

Wellysis is known for its continuous ECG/EKG monitor with AI reporting. Its lightweight and waterproof S-Patch cardiac monitor is designed for extended testing periods of up to 14 days on a single battery charge.

The company says that the funding will go toward commercializing the next generation of the S-Patch, known as the S-Patch MX, which will be able to capture more than 30 biometric signals, including ECG, temperature and body composition.

Wellysis also reports that it will use the funding to expand its Houston-based operations, specifically in its commercial, clinical and customer success teams.

Additionally, the company plans to accelerate the product development of two other biometric products:

  • CardioAI, an AI-powered diagnostic software platform designed to support clinical interpretation, workflow efficiency and scalable cardiac analysis
  • BioArmour, a non-medical biometric monitoring solution for the sports, public safety and defense sectors

“This pre-IPO round validates both our technology and our readiness to scale globally,” Young Juhn, CEO of Wellysis, said in the release. “With FDA-cleared solutions, expanding U.S. operations, and a strong AI roadmap, Wellysis is positioned to redefine how cardiac data is captured, interpreted, and acted upon across healthcare systems worldwide.”

Wellysis was founded in 2019 as a spinoff of Samsung. Its S-Patch runs off of a Samsung Smart Health Processor. The company's U.S. subsidiary, Wellysis USA Inc., was established in Houston in 2023 and was a resident of JLABS@TMC.

Elon Musk vows to launch solar-powered data centers in space

To Outer Space

Elon Musk vowed this week to upend another industry just as he did with cars and rockets — and once again he's taking on long odds.

The world's richest man said he wants to put as many as a million satellites into orbit to form vast, solar-powered data centers in space — a move to allow expanded use of artificial intelligence and chatbots without triggering blackouts and sending utility bills soaring.

To finance that effort, Musk combined SpaceX with his AI business on Monday, February 2, and plans a big initial public offering of the combined company.

“Space-based AI is obviously the only way to scale,” Musk wrote on SpaceX’s website, adding about his solar ambitions, “It’s always sunny in space!”

But scientists and industry experts say even Musk — who outsmarted Detroit to turn Tesla into the world’s most valuable automaker — faces formidable technical, financial and environmental obstacles.

Feeling the heat

Capturing the sun’s energy from space to run chatbots and other AI tools would ease pressure on power grids and cut demand for sprawling computing warehouses that are consuming farms and forests and vast amounts of water to cool.

But space presents its own set of problems.

Data centers generate enormous heat. Space seems to offer a solution because it is cold. But it is also a vacuum, trapping heat inside objects in the same way that a Thermos keeps coffee hot using double walls with no air between them.

“An uncooled computer chip in space would overheat and melt much faster than one on Earth,” said Josep Jornet, a computer and electrical engineering professor at Northeastern University.

One fix is to build giant radiator panels that glow in infrared light to push the heat “out into the dark void,” says Jornet, noting that the technology has worked on a small scale, including on the International Space Station. But for Musk's data centers, he says, it would require an array of “massive, fragile structures that have never been built before.”

Floating debris

Then there is space junk.

A single malfunctioning satellite breaking down or losing orbit could trigger a cascade of collisions, potentially disrupting emergency communications, weather forecasting and other services.

Musk noted in a recent regulatory filing that he has had only one “low-velocity debris generating event" in seven years running Starlink, his satellite communications network. Starlink has operated about 10,000 satellites — but that's a fraction of the million or so he now plans to put in space.

“We could reach a tipping point where the chance of collision is going to be too great," said University at Buffalo's John Crassidis, a former NASA engineer. “And these objects are going fast -- 17,500 miles per hour. There could be very violent collisions."

No repair crews

Even without collisions, satellites fail, chips degrade, parts break.

Special GPU graphics chips used by AI companies, for instance, can become damaged and need to be replaced.

“On Earth, what you would do is send someone down to the data center," said Baiju Bhatt, CEO of Aetherflux, a space-based solar energy company. "You replace the server, you replace the GPU, you’d do some surgery on that thing and you’d slide it back in.”

But no such repair crew exists in orbit, and those GPUs in space could get damaged due to their exposure to high-energy particles from the sun.

Bhatt says one workaround is to overprovision the satellite with extra chips to replace the ones that fail. But that’s an expensive proposition given they are likely to cost tens of thousands of dollars each, and current Starlink satellites only have a lifespan of about five years.

Competition — and leverage

Musk is not alone trying to solve these problems.

A company in Redmond, Washington, called Starcloud, launched a satellite in November carrying a single Nvidia-made AI computer chip to test out how it would fare in space. Google is exploring orbital data centers in a venture it calls Project Suncatcher. And Jeff Bezos’ Blue Origin announced plans in January for a constellation of more than 5,000 satellites to start launching late next year, though its focus has been more on communications than AI.

Still, Musk has an edge: He's got rockets.

Starcloud had to use one of his Falcon rockets to put its chip in space last year. Aetherflux plans to send a set of chips it calls a Galactic Brain to space on a SpaceX rocket later this year. And Google may also need to turn to Musk to get its first two planned prototype satellites off the ground by early next year.

Pierre Lionnet, a research director at the trade association Eurospace, says Musk routinely charges rivals far more than he charges himself —- as much as $20,000 per kilo of payload versus $2,000 internally.

He said Musk’s announcements this week signal that he plans to use that advantage to win this new space race.

“When he says we are going to put these data centers in space, it’s a way of telling the others we will keep these low launch costs for myself,” said Lionnet. “It’s a kind of powerplay.”

Johnson Space Center and UT partner to expand research, workforce development

onward and upward

NASA’s Johnson Space Center in Houston has forged a partnership with the University of Texas System to expand collaboration on research, workforce development and education that supports space exploration and national security.

“It’s an exciting time for the UT System and NASA to come together in new ways because Texas is at the epicenter of America’s space future. It’s an area where America is dominant, and we are committed as a university system to maintaining and growing that dominance,” Dr. John Zerwas, chancellor of the UT System, said in a news release.

Vanessa Wyche, director of Johnson Space Center, added that the partnership with the UT System “will enable us to meet our nation’s exploration goals and advance the future of space exploration.”

The news release noted that UT Health Houston and the UT Medical Branch in Galveston already collaborate with NASA. The UT Medical Branch’s aerospace medicine residency program and UT Health Houston’s space medicine program train NASA astronauts.

“We’re living through a unique moment where aerospace innovation, national security, economic transformation, and scientific discovery are converging like never before in Texas," Zerwas said. “UT institutions are uniquely positioned to partner with NASA in building a stronger and safer Texas.”

Zerwas became chancellor of the UT System in 2025. He joined the system in 2019 as executive vice chancellor for health affairs. Zerwas represented northwestern Ford Bend County in the Texas House from 2007 to 2019.

In 1996, he co-founded a Houston-area medical practice that became part of US Anesthesia Partners in 2012. He remained active in the practice until joining the UT System. Zerwas was chief medical officer of the Memorial Hermann Hospital System from 2003 to 2008 and was its chief physician integration officer until 2009.

Zerwas, a 1973 graduate of the Houston area’s Bellaire High School, is an alumnus of the University of Houston and Baylor College of Medicine.