Houston companies need cybersecurity professionals — and universities can help. Photo via Getty Images

With an increasing number of data breaches, a high job growth rate, and a persistent skills gap, cybersecurity professionals will be some of the most in-demand workers in 2022. It’s more important than ever to have people that are properly trained to protect individuals, corporations, and communities.

Demand for cybersecurity talent in Texas is high. According to Burning Glass Labor Insights, employers in the Houston metro area have posted over 24,000 cybersecurity jobs since the beginning of 2021. But the pipeline of cybersecurity workers is very low, which means many local and national companies don’t have enough people on the front lines defending against these attacks.

Unfortunately, it looks like the cybersecurity skills gap is far from over. An annual industry report from the Information Systems Security Association shows that the global demand for cybersecurity skills still far exceeds the current supply of traditionally qualified individuals, with 38 percent of cybersecurity roles currently unfilled. This shortage has real-life, real-world consequences that can result in misconfigured systems and improper risk assessment and management.

How can companies help close the cybersecurity skills gap within their own organizations? We believe it will become increasingly important to look beyond “traditionally qualified” candidates and view hands-on experience as the same, or even more important than, the certifications or bachelor degree requirements often found in cybersecurity job descriptions.

The top open cybersecurity roles in the Houston area include analysts, managers, engineers, and developers. Employees in these positions are essential to the everyday monitoring, troubleshooting, testing and analyzing that helps companies protect data and stay one step ahead of hackers. When looking to fill these roles, hiring managers should be looking for candidates with both the knowledge and experience to take on these critical positions.

Fortunately, Houston-based companies looking to establish, grow, or upskill their cybersecurity teams don’t have to go far to find top-tier talent and training programs. More local colleges and universities are offering alternative credential programs, like boot camps, that provide students with the deep understanding and hands-on learning they need to excel in the roles that companies need to fill.

2U, Inc. and Rice University have partnered to power a data-driven, market-responsive cybersecurity boot camp that provides students with hands-on training in networking, systems, web technologies, databases, and defensive and offensive cybersecurity. Over 40 percent of the students didn’t have bachelor degrees prior to enrolling in the program. Since launching in 2019, the program has produced more than 140 graduates, some of whom have gone on to work in cybersecurity roles at local companies such as CenterPoint Energy, Fulcrum Technology Solutions, and Hewlett Packard.

Recognizing programs like university boot camps as local workforce generators not only gives companies a larger talent pool to recruit from, but also increases the opportunity for cybersecurity teams to diversify and include professionals with different experiences and backgrounds. We’re living in a security-first world, and the right mix of cybersecurity talent is essential to keeping us protected wherever we are.

------

David Vassar is the assistant dean of Susanne M. Glasscock School of Continuing Studies at Rice University. Bret Fund is vice president overseeing cybersecurity programs at 2U.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston-based HPE wins $931M contract to upgrade military data centers

defense data centers

Hewlett Packard Enterprise (HPE), based in Spring, Texas, which provides AI, cloud, and networking products and services, has received a $931 million contract to modernize data centers run by the federal Defense Information Systems Agency.

HPE says it will supply distributed hybrid multicloud technology to the federal agency, which provides combat support for U.S. troops. The project will feature HPE’s Private Cloud Enterprise and GreenLake offerings. It will allow DISA to scale and accelerate communications, improve AI and data analytics, boost IT efficiencies, reduce costs and more, according to a news release from HPE.

The contract comes after the completion of HPE’s test of distributed hybrid multicloud technology at Defense Information Systems Agency (DISA) data centers in Mechanicsburg, Pennsylvania, and Ogden, Utah. This technology is aimed at managing DISA’s IT infrastructure and resources across public and private clouds through one hybrid multicloud platform, according to Data Center Dynamics.

Fidelma Russo, executive vice president and general manager of hybrid cloud at HPE, said in a news release that the project will enable DISA to “deliver innovative, future-ready managed services to the agencies it supports that are operating across the globe.”

The platform being developed for DISA “is designed to mirror the look and feel of a public cloud, replicating many of the key features” offered by cloud computing businesses such as Amazon Web Services (AWS), Microsoft Azure and Google Cloud Platform, according to The Register.

In the 1990s, DISA consolidated 194 data centers into 16. According to The Register, these are the U.S. military’s most sensitive data centers.

More recently, in 2024, the Fort Meade, Maryland-based agency laid out a five-year strategy to “simplify the network globally with large-scale adoption of command IT environments,” according to Data Center Dynamics.

Astros and Rockets launch new streaming service for Houston sports fans

Sports Talk

Houston sports fans now have a way to watch their favorite teams without a cable or satellite subscription. Launched December 3, the Space City Home Network’s SCHN+ service allows consumers to watch the Houston Astros and Houston Rockets via iOS, Apple TV, Android, Amazon Fire TV, or web browser.

A subscription to SCHN+ allows sports fans to watch all Astros and Rockets games, as well as behind-the-scenes features and other on-demand content. It’s priced at $19.99 per month or $199.99 annually (plus tax). People who watch Space City Network Network via their existing cable or satellite service will be able to access SCHN+ at no additional charge.

As the Houston Chronicle notes, the Astros and Rockets were the only MLB and NBA teams not to offer a direct-to-consumer streaming option.

“We’re thrilled to offer another great option to ensure fans have access to watch games, and the SCHN+ streaming app makes it easier than ever to cheer on the Rockets,” Rockets alternate governor Patrick Fertitta said in a statement.

“Providing fans with a convenient way to watch their favorite teams, along with our network’s award-winning programming, was an essential addition. This season feels special, and we’re committed to exploring new ways to elevate our broadcasts for Rockets fans to enjoy.”

Astros owner Jim Crane echoed Feritta’s comments, adding, “Providing fans options on how they view our games is important as we continue to grow the game – we want to make it accessible to as large an audience as possible. We are looking forward to the 2026 season and more Astros fans watching our players compete for another championship.”

SCHN+ is available to customers in Texas; Louisiana; Arkansas; Oklahoma; and the following counties in New Mexico: Dona Ana, Eddy, Lea, Chaves, Roosevelt, Curry, Quay, Union, and Debaca. Fans outside these areas will need to subscribe to the NBA and MLB out-of-market services.

---

This article originally appeared on CultureMap.com.

Rice University researchers unveil new model that could sharpen MRI scans

MRI innovation

Researchers at Rice University, in collaboration with Oak Ridge National Laboratory, have developed a new model that could lead to sharper imaging and safer diagnostics using magnetic resonance imaging, or MRI.

In a study recently published in The Journal of Chemical Physics, the team of researchers showed how they used the Fokker-Planck equation to better understand how water molecules respond to contrast agents in a process known as “relaxation.” Previous models only approximated how water molecules relaxed around contrasting agents. However, through this new model, known as the NMR eigenmodes framework, the research team has uncovered the “full physical equations” to explain the process.

“The concept is similar to how a musical chord consists of many notes,” Thiago Pinheiro, the study’s first author, a Rice doctoral graduate in chemical and biomolecular engineering and postdoctoral researcher in the chemical sciences division at Oak Ridge National Laboratory, said in a news release. “Previous models only captured one or two notes, while ours picks up the full harmony.”

According to Rice, the findings could lead to the development and application of new contrast agents for clearer MRIs in medicine and materials science. Beyond MRIs, the NMR relaxation method could also be applied to other areas like battery design and subsurface fluid flow.

“In the present paper, we developed a comprehensive theory to interpret those previous molecular dynamics simulations and experimental findings,” Dilipkumar Asthagiri, a senior computational biomedical scientist in the National Center for Computational Sciences at Oak Ridge National Laboratory, said in the release. ”The theory, however, is general and can be used to understand NMR relaxation in liquids broadly.”

The team has also made its code available as open source to encourage its adoption and further development by the broader scientific community.

“By better modeling the physics of nuclear magnetic resonance relaxation in liquids, we gain a tool that doesn’t just predict but also explains the phenomenon,” Walter Chapman, a professor of chemical and biomolecular engineering at Rice, added in the release. “That is crucial when lives and technologies depend on accurate scientific understanding.”

The study was backed by The Ken Kennedy Institute, Rice Creative Ventures Fund, Robert A. Welch Foundation and Oak Ridge Leadership Computing Facility at Oak Ridge National Laboratory.