By September 1, Project V delivered its first order of 30,000 ventilators just 154 days after launching. Photo by AJ Mast for General Motors and Ventec

Houston-based Velentium played a key role in mobilizing thousands of ventilators in the United States at a time when the pandemic and the uncertainty around it was surmounting around the country.

The medical technology company primarily worked in code, software, and cloud-based programs up until March.

"Then we had this opportunity come up in COVID that changed everything for us," says CEO Dan Purvis.

On March 14, an article for Forbes referenced one of Velentium's long-time clients Ventec Life Systems, a manufacturer of ventilators based in Washington. In the article, their client said they could increase production of their much-needed ventilators five-fold if they only had the right resources and partners. Purvis quickly decided that he and his team at Velentium would be one of them.

Velentium first aimed to help the small factory double or triple their production.

"When we first joined the process we were just going to our client, which was a relatively young start up firm, to try to help them go from 120 to 250 [units]," Purvis says.

But then General Motors showed up. And the scale changed dramatically.

The automotive behemoth launched Project V, which would marry it's manufacturing prowess with the technical expertise of the technology and engineering companies to mass produce Ventec's VOCSN ventilator systems. By March 25, operations launched at GM's Kokomo, Indiana, powerhouse plant where they were to produce 10,000 ventilators per month in just about eight week's time.

Velentium was charged with creating 141 automated test stands to verify that every one of Project V's 10,000 units were up to FDA standards. The stands featured 27 unique test systems that monitored 14 critical subcomponents, like air flow in metering valves and oxygen blends, and ultimately approved a ventilator for use through two final tests.

"It's one thing to build [ventilators]," Purvis says. "You need to build them safely, accurately, and in a repeatable way that is going to help people. And that's what our test systems insured."

And though Velentium had created many of these systems before, they had never done so at this scale or speed. Success required around-the-clock work from the then-60-person firm and new risks, that today Purvis says were worth taking.

"I was like, 'If we really want this to work we have to jump on this like nobody's business,'" Purvis recalls. "We bought $2 million worth of parts for test systems essentially at risk. We had not gotten our negotiation with General Motors done yet. But there was no way I could wait an extra week if I had eight weeks to do it. It was kind of terrifying, but it was the right thing to do. It totally aligned with our culture of saving lives."

By September 1, Project V delivered its first order of 30,000 ventilators to the U.S. Department of Health and Human Services, just 154 days after launching.

Today, Velentium maintains a few team members at the Kokomo facility who run sustaining engineering. Throughout the project, Velentium added 60 team members to their staff and doubled down on manufacturing capabilities. They plan to double their production space again as they continue to place more emphasis on their manufacturing arm, which Purvis says opens up new opportunities for the firm that he hopes only continues to grow.

"One of the big goals for me as a strategic leader at the company was to make sure that pre-Project V to post-Project V the transformation that happened to our company through that period would not regress to where we were before," he says. "We had so much impact and so much growth through that time I didn't ever want to change."

He adds: "We asked the question over and over again during the first few weeks of the pandemic in March: Why not us? If I will continue to ask the question…we can accomplish major things."

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

TMC, Memorial Hermann launch partnership to spur new patient care technologies

medtech partnership

Texas Medical Center and Memorial Hermann Health System have launched a new collaboration for developing patient care technology.

Through the partnership, Memorial Hermann employees and physicians will now be able to participate in the TMC Center for Device Innovation (CDI), which will assist them in translating product innovation ideas into working prototypes. The first group of entrepreneurs will pitch their innovations in early 2026, according to a release from TMC.

“Memorial Hermann is excited to launch this new partnership with the TMC CDI,” Ini Ekiko Thomas, vice president of information technology at Memorial Hermann, said in the news release. “As we continue to grow (a) culture of innovation, we look forward to supporting our employees, affiliated physicians and providers in new ways.”

Mentors from Memorial Hermann, TMC Innovation and industry experts with specialties in medicine, regulatory strategy, reimbursement planning and investor readiness will assist with the program. The innovators will also gain access to support systems like product innovation and translation strategy, get dedicated engineering and machinist resources and personal workbench space at the CDI.

“The prototyping facilities and opportunities at TMC are world-class and globally recognized, attracting innovators from around the world to advance their technologies,” Tom Luby, chief innovation officer at TMC Innovation Factor, said in the release.

Memorial Hermann says the partnership will support its innovation hub’s “pilot and scale approach” and hopes that it will extend the hub’s impact in “supporting researchers, clinicians and staff in developing patentable, commercially viable products.”

“We are excited to expand our partnership with Memorial Hermann and open the doors of our Center for Device Innovation to their employees and physicians—already among the best in medical care,” Luby added in the release. “We look forward to seeing what they accomplish next, utilizing our labs and gaining insights from top leaders across our campus.”

Google to invest $40 billion in AI data centers in Texas

Google is investing a huge chunk of money in Texas: According to a release, the company will invest $40 billion on cloud and artificial intelligence (AI) infrastructure, with the development of new data centers in Armstrong and Haskell counties.

The company announced its intentions at a meeting on November 14 attended by federal, state, and local leaders including Gov. Greg Abbott who called it "a Texas-sized investment."

Google will open two new data center campuses in Haskell County and a data center campus in Armstrong County.

Additionally, the first building at the company’s Red Oak campus in Ellis County is now operational. Google is continuing to invest in its existing Midlothian campus and Dallas cloud region, which are part of the company’s global network of 42 cloud regions that deliver high-performance, low-latency services that businesses and organizations use to build and scale their own AI-powered solutions.

Energy demands

Google is committed to responsibly growing its infrastructure by bringing new energy resources onto the grid, paying for costs associated with its operations, and supporting community energy efficiency initiatives.

One of the new Haskell data centers will be co-located with — or built directly alongside — a new solar and battery energy storage plant, creating the first industrial park to be developed through Google’s partnership with Intersect and TPG Rise Climate announced last year.

Google has contracted to add more than 6,200 megawatts (MW) of net new energy generation and capacity to the Texas electricity grid through power purchase agreements (PPAs) with energy developers such as AES Corporation, Enel North America, Intersect, Clearway, ENGIE, SB Energy, Ørsted, and X-Elio.

Water demands

Google’s three new facilities in Armstrong and Haskell counties will use air-cooling technology, limiting water use to site operations like kitchens. The company is also contributing $2.6 million to help Texas Water Trade create and enhance up to 1,000 acres of wetlands along the Trinity-San Jacinto Estuary. Google is also sponsoring a regenerative agriculture program with Indigo Ag in the Dallas-Fort Worth area and an irrigation efficiency project with N-Drip in the Texas High Plains.

In addition to the data centers, Google is committing $7 million in grants to support AI-related initiatives in healthcare, energy, and education across the state. This includes helping CareMessage enhance rural healthcare access; enabling the University of Texas at Austin and Texas Tech University to address energy challenges that will arise with AI, and expanding AI training for Texas educators and students through support to Houston City College.

---

This article originally appeared on CultureMap.com.

TMCi names 11 global startups to latest HealthTech Accelerator cohort

new class

Texas Medical Center Innovation has named 11 medtech startups from around the world to its latest HealthTech Accelerator cohort.

Members of the accelerator's 19th cohort will participate in the six-month program, which kicked off this month. They range from startups developing on-the-go pelvic floor monitoring to 3D-printed craniofacial and orthopedic implants. Each previously participated in TMCi's bootcamp before being selected to join the accelerator. Through the HealthTech Accelerator, founders will work closely with TMC specialists, researchers, top-tier hospital experts and seasoned advisors to help grow their companies and hone their clinical trials, intellectual property, fundraising and more.

“This cohort of startups is tackling some of today’s most pressing clinical challenges, from surgery and respiratory care to diagnostics and women’s health," Tom Luby, chief innovation officer at Texas Medical Center, said in a news release. "At TMC, we bring together the minds behind innovation—entrepreneurs, technology leaders, and strategic partners—to help emerging companies validate, scale, and deliver solutions that make a real difference for patients here and around the world. We look forward to seeing their progress and global impact through the HealthTech Accelerator and the support of our broader ecosystem.”

The 2025 HealthTech Accelerator cohort includes:

  • Houston-based Respiree, which has created an all-in-one cardiopulmonary platform with wearable sensors for respiratory monitoring that uses AI to track breathing patterns and detect early signs of distress
  • College Station-based SageSpectra, which designs an innovative patch system for real-time, remote monitoring of temperature and StO2 for assessing vascular occlusion, infection, and other surgical flap complications
  • Austin-based Dynamic Light, which has developed a non-invasive imaging technology that enables surgeons to visualize blood flow in real-time without the need for traditional dyes
  • Bangkok, Thailand-based OsseoLabs, which develops AI-assisted, 3D-printed patient-specific implants for craniofacial and orthopedic surgeries
  • Sydney, Australia-based Roam Technologies, which has developed a portable oxygen therapy system (JUNO) that provides real-time oxygen delivery optimization for patients with chronic conditions
  • OptiLung, which develops 3D-printed extracorporeal blood oxygenation devices designed to optimize blood flow and reduce complications
  • Bengaluru, India-based Dozee, which has created a smart remote patient monitor platform that uses under-the-mattress bed sensors to capture vital signs through continuous monitoring
  • Montclair, New Jersey-based Endomedix, which has developed a biosurgical fast-acting absorbable hemostat designed to eliminate the risk of paralysis and reoperation due to device swelling
  • Williston, Vermont-based Xander Medical, which has designed a biomechanical innovation that addresses the complications and cost burdens associated with the current methods of removing stripped and broken surgical screws
  • Salt Lake City, Utah-based Freyya, which has developed an on-the-go pelvic floor monitoring and feedback device for people with pelvic floor dysfunction
  • The Netherlands-based Scinvivo, which has developed optical imaging catheters for bladder cancer diagnostics