locking it down

Houston students place high in national cyber security competition

A team of Houston college students laced in the top 10 percent of 7,800 students at the National Cyber League competition. Photo courtesy of HCC

A team from Houston Community College had a strong showing earlier this month at the spring National Cyber League competition.

A team of HCC students placed in the top 10 percent of finishers, according to a statement from the college. More than 7,800 students from 450 universities and colleges across the U.S.competed in the semi-annual competition that tests participants’ skills in identifying hackers from forensic data, penetration testing, auditing vulnerable websites and recovering from ransomware attacks through a series of games.

“Our goal is to empower our students with the knowledge and tools they need to succeed as leaders in information technology, including the fast growing and in-demand areas of cyber security and artificial intelligence,” Dr. Madeline Burillo-Hopkins, president of HCC Southwest College and vice chancellor of workforce, says in a statement. “Again and again, we find that our students perform exceptionally well when compared to those from colleges and universities across the nation.”

Hira Ali, a participant and mother of two who served as vice president of the HCC Cyber Security Club before graduating this year, says the experience pushed her and her teammates to expand their knowledge outside of the classroom.

“It was a great experience for us,” she says in a statement. “It presented us, as teammates, with the opportunity to venture beyond our comfort zones and delve into unfamiliar concepts."

Ali added that she ate almost nothing and slept little for a week because she and her team were "totally immersed in the competition.” She plans to enroll in a four-year online degree program through Dakota State University.

According to Samir Saber, dean of HCC’s Digital, and Information Technology Center of Excellence, there are about 57,878 cyber jobs in Texas alone. HCC also shared that the median salary for security analysts in the Houston area is about $101,000, according to Lightcast, a labor market data analysis firm.

Earlier this month, HCC also announced that it would be rolling out a new innovation 60-hour degree program in the fall. The Smart Building Technology program will train students on the installation of low-voltage controls. Students will receive an Associate of Applied Science degree after completing the program, which is part of HCC Central’s Electrical Technology program in the Architectural Design and Construction Center of Excellence (COE).

In late 2022, HCC and partners also received a $1.8 million grant from JP Morgan Chase to launch a new certificate program to help residents who come from some of Houston’s most underserved and under-resourced neighborhoods find career opportunities in the clean energy, disaster response, utilities, trades and manufacturing fields. Partnering employers included The City of Houston, Harris County and TRIO Electric.

Trending News

 
 

Promoted

A research team housed out of the newly launched Rice Biotech Launch Pad received funding to scale tech that could slash cancer deaths in half. Photo via Rice University

A research funding agency has deployed capital into a team at Rice University that's working to develop a technology that could cut cancer-related deaths in half.

Rice researchers received $45 million from the National Institutes of Health's Advanced Research Projects Agency for Health, or ARPA-H, to scale up development of a sense-and-respond implant technology. Rice bioengineer Omid Veiseh leads the team developing the technology as principal investigator.

“Instead of tethering patients to hospital beds, IV bags and external monitors, we’ll use a minimally invasive procedure to implant a small device that continuously monitors their cancer and adjusts their immunotherapy dose in real time,” he says in a news release. “This kind of ‘closed-loop therapy’ has been used for managing diabetes, where you have a glucose monitor that continuously talks to an insulin pump. But for cancer immunotherapy, it’s revolutionary.”

Joining Veiseh on the 19-person research project named THOR, which stands for “targeted hybrid oncotherapeutic regulation,” is Amir Jazaeri, co-PI and professor of gynecologic oncology at the University of Texas MD Anderson Cancer Center. The device they are developing is called HAMMR, or hybrid advanced molecular manufacturing regulator.

“Cancer cells are continually evolving and adapting to therapy. However, currently available diagnostic tools, including radiologic tests, blood assays and biopsies, provide very infrequent and limited snapshots of this dynamic process," Jazaeri adds. "As a result, today’s therapies treat cancer as if it were a static disease. We believe THOR could transform the status quo by providing real-time data from the tumor environment that can in turn guide more effective and tumor-informed novel therapies.”

With a national team of engineers, physicians, and experts across synthetic biology, materials science, immunology, oncology, and more, the team will receive its funding through the Rice Biotech Launch Pad, a newly launched initiative led by Veiseh that exists to help life-saving medical innovation scale quickly.

"Rice is proud to be the recipient of the second major funding award from the ARPA-H, a new funding agency established last year to support research that catalyzes health breakthroughs," Rice President Reginald DesRoches says. "The research Rice bioengineer Omid Veiseh is doing in leading this team is truly groundbreaking and could potentially save hundreds of thousands of lives each year. This is the type of research that makes a significant impact on the world.”

The initial focus of the technology will be on ovarian cancer, and this funding agreement includes a first-phase clinical trial of HAMMR for the treatment of recurrent ovarian cancer that's expected to take place in the fourth year of THOR’s multi-year project.

“The technology is broadly applicable for peritoneal cancers that affect the pancreas, liver, lungs and other organs,” Veiseh says. “The first clinical trial will focus on refractory recurrent ovarian cancer, and the benefit of that is that we have an ongoing trial for ovarian cancer with our encapsulated cytokine ‘drug factory’ technology. We'll be able to build on that experience. We have already demonstrated a unique model to go from concept to clinical trial within five years, and HAMMR is the next iteration of that approach.”

Trending News

 
 

Promoted