just face it

Houston airport first in Texas to be selected for facial recognition program

Hobby Airport was one of five airports selected nationally to use a new facial recognition software. Image via fly2houston.com

International travelers coming in and out of Hobby Airport are being processed now completely with facial recognition as of last week. The technology is expected to shorten wait times and streamline safety.

"Hobby Airport has taken a big leap into the future of travel," Houston Aviation Director Mario Diaz says in a news release.

Houston was one of the five airports picked by Homeland Security — and the only in Texas — to have Simplified Arrivals, a full biometric entry and exit for international passengers going through United States Customs and Border Protection inspection checkpoints.

"Simplified Arrivals will enhance the travel experience for more than a million international passengers traveling through Hobby Airport every year," Diaz continues in the release. "This is an important step to realize our goal of becoming a 5-star airport."

Houston Airport Systems first introduced biometric technology with Southwest Airlines in November 2018, and before that, George Bush Intercontinental Airport first started using facial recognition technology in 2017. Since 2018, this biometric facial technology has recognized 250 imposters nationally who attempted to enter the U.S. with legal travel documents that belonged to a different person, according to the release.

The new technology is expected to speed up the checkpoint process. Image via fly2houston.com

Travelers will encounter the technology at their primary inspection point. They will taker a photo, which will then compare that image to previously provided photos of that traveler — like passport and visa photos. Travelers under the age of 14 or over the age of 79 can opt out and be process manually. United States and Canadian citizens may also opt out.

"CBP is committed to working with our partners to ensure that the travel system is secure and efficient," Houston Director of Field Operations Judson W. Murdock II says in the release. "The speed, accuracy and reliability of facial comparison technology enable CBP officers to confirm a traveler's identity within seconds while further enhancing the customer experience."

These new photos of U.S. citizens taken at the checkpoint will be deleted within 12 hours, while photos of foreign nationals will be stored in a secure system.

"It takes a village to make something like this happen," says Saba Abashawl, director of external affairs at HAS, in a promotional video. "At the end of the day, we end up providing unparalleled customer service."

Trending News

Building Houston

 
 

Stroke patients have a new hope for arm rehabilitation thanks to a team from UH. Photo courtesy of UH

Almost 800,000 people in the United States suffer from a stroke annually — and the affliction affects each patient differently. One University of Houston researcher has created a device that greatly improves the lives of patients whose stroke affected motor skills.

UH engineering professor Jose Luis Contreras-Vidal developed a next-generation robotic arm that can be controlled by the user's brainwaves. The portable device uses a brain-computer interface (BCI) developed by Contreras-Vidal. Stroke patient Oswald Reedus, 66, is the first person to use a device of this kind.

Reedus lost the use of his left arm following a stroke that also caused aphasia, or difficulty speaking. While he's been able to recover his ability to speak clearly, the new exoskeleton will help rehabilitate his arm.

When strapped into the noninvasive device, the user's brain activity is translated into motor commands to power upper-limb robotics. As patients like Reedus use the device, more data is collected to improve the experience.

“If I can pass along anything to help a stroke person’s life, I will do it. For me it’s my purpose in life now,” says Reedus in a news release from UH. His mother and younger brother both died of strokes, and Reedus is set on helping the device that can help other stroke patients recover.

Contreras-Vidal, a Hugh Roy and Lillie Cranz Cullen distinguished professor, has led his device from ideation to in-home use, like with Reedus, as well as clinical trials at TIRR Memorial Hermann. The project is funded in part from an $813,999 grant from the National Science Foundation’s newly created Division of Translational Impacts.

"Our project addresses a pressing need for accessible, safe, and effective stroke rehabilitation devices for in-clinic and at-home use for sustainable long-term therapy, a global market size expected to currently be $31 billion," Contreras-Vidal says in the release. "Unfortunately, current devices fail to engage the patients, are hard to match to their needs and capabilities, are costly to use and maintain, or are limited to clinical settings."

Dr. Gerard E. Francisco, chief medical officer and director of the Neuro Recovery Research Center at TIRR Memorial Hermann, is leading the clinical trials for the device. He's also chair and professor in the Department of Physical Medicine and Rehabilitation at McGovern Medical School at UTHealth Houston. He explains that TIRR's partnership with engineering schools such as the Cullen College of Engineering at UH and others around the nation is strategic.

“This is truly exciting because what we know now is there are so many ways we can induce neuroplasticity or how we can boost recovery,” says Francisco in the release. “That collaboration is going to give birth to many of these groundbreaking technologies and innovations we can offer our patients.”

Both parts of the device — a part that attaches to the patient's head and a part affixed to their arm — are noninvasive. Photo courtesy of UH

Trending News