Hobby Airport was one of five airports selected nationally to use a new facial recognition software. Image via fly2houston.com

International travelers coming in and out of Hobby Airport are being processed now completely with facial recognition as of last week. The technology is expected to shorten wait times and streamline safety.

"Hobby Airport has taken a big leap into the future of travel," Houston Aviation Director Mario Diaz says in a news release.

Houston was one of the five airports picked by Homeland Security — and the only in Texas — to have Simplified Arrivals, a full biometric entry and exit for international passengers going through United States Customs and Border Protection inspection checkpoints.

"Simplified Arrivals will enhance the travel experience for more than a million international passengers traveling through Hobby Airport every year," Diaz continues in the release. "This is an important step to realize our goal of becoming a 5-star airport."

Houston Airport Systems first introduced biometric technology with Southwest Airlines in November 2018, and before that, George Bush Intercontinental Airport first started using facial recognition technology in 2017. Since 2018, this biometric facial technology has recognized 250 imposters nationally who attempted to enter the U.S. with legal travel documents that belonged to a different person, according to the release.

The new technology is expected to speed up the checkpoint process. Image via fly2houston.com

Travelers will encounter the technology at their primary inspection point. They will taker a photo, which will then compare that image to previously provided photos of that traveler — like passport and visa photos. Travelers under the age of 14 or over the age of 79 can opt out and be process manually. United States and Canadian citizens may also opt out.

"CBP is committed to working with our partners to ensure that the travel system is secure and efficient," Houston Director of Field Operations Judson W. Murdock II says in the release. "The speed, accuracy and reliability of facial comparison technology enable CBP officers to confirm a traveler's identity within seconds while further enhancing the customer experience."

These new photos of U.S. citizens taken at the checkpoint will be deleted within 12 hours, while photos of foreign nationals will be stored in a secure system.

"It takes a village to make something like this happen," says Saba Abashawl, director of external affairs at HAS, in a promotional video. "At the end of the day, we end up providing unparalleled customer service."

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

TMC lands $3M grant to launch cancer device accelerator

cancer funding

A new business accelerator at Houston’s Texas Medical Center has received a nearly $3 million grant from the Cancer Prevention and Research Institute of Texas.

The CPRIT grant, awarded to the Texas Medical Center Foundation, will help launch the Accelerator for Cancer Medical Devices. The accelerator will support emerging innovators in developing prototypes for cancer-related medical devices and advancing them from prototype to clinical trials.

“The translation of new cancer-focused precision medical devices, often the width of a human hair, creates the opportunity to develop novel treatments for cancer patients,” the accelerator posted on the CPRIT website.

Scientist, consultant, and entrepreneur Jason Sakamoto, associate director of the TMC Center for Device Innovation, will oversee the accelerator. TMC officials say the accelerator builds on the success of TMC Innovation’s Accelerator for Cancer Therapeutics.

Each participant in the Accelerator for Cancer Medical Devices program will graduate with a device prototype, a business plan, and a “solid foundation” in preclinical and clinical strategies, TMC says. Participants will benefit from “robust support” provided by the TMC ecosystem, according to the medical center, and “will foster innovation into impactful and life-changing cancer patient solutions in Texas and beyond.”

In all, CPRIT recently awarded $27 million in grants for cancer research. That includes $18 million to attract top cancer researchers to Texas. Houston institutions received $4 million for recruitment:

  • $2 million to the University of Texas MD Anderson Cancer Center to recruit Rodrigo Romero from Memorial Sloan Kettering Cancer Center in New York City
  • $2 million to MD Anderson to recruit Eric Gardner from Weill Cornell Medicine in New York City

A $1 million grant also went to Baylor College of Medicine researcher Dr. Akiva Diamond. He is an assistant professor at the medical college and is affiliated with Baylor’s Dan L. Duncan Comprehensive Cancer Center.

Houston students develop cost-effective glove to treat Parkinson's symptoms

smart glove

Two Rice undergraduate engineering students have developed a non-invasive vibrotactile glove that aims to alleviate the symptoms of Parkinson’s disease through therapeutic vibrations.

Emmie Casey and Tomi Kuye developed the project with support from the Oshman Engineering Design Kitchen (OEDK) and guidance from its director, Maria Oden, and Rice lecturer Heather Bisesti, according to a news release from the university.

The team based the design on research from the Peter Tass Lab at Stanford University, which explored how randomized vibratory stimuli delivered to the fingertips could help rewire misfiring neurons in the brain—a key component of Parkinson’s disease.

Clinical trials from Stanford showed that coordinated reset stimulation from the vibrations helped patients regain motor control and reduced abnormal brain activity. The effects lasted even after users removed the vibrotactile gloves.

Casey and Kuye set out to replicate the breakthrough at a lower cost. Their prototype replaced the expensive motors used in previous designs with motors found in smartphones that create similar tiny vibrations. They then embedded the motors into each fingertip of a wireless glove.

“We wanted to take this breakthrough and make it accessible to people who would never be able to afford an expensive medical device,” Casey said in the release. “We set out to design a glove that delivers the same therapeutic vibrations but at a fraction of the cost.”

Rice’s design also targets the root of the neurological disruption and attempts to retrain the brain. An early prototype was given to a family friend who had an early onset of the disease. According to anecdotal data from Rice, after six months of regularly using the gloves, the user was able to walk unaided.

“We’re not claiming it’s a cure,” Kuye said in the release. “But if it can give people just a little more control, a little more freedom, that’s life-changing.”

Casey and Kuye are working to develop a commercial version of the glove priced at $250. They are taking preorders and hope to release 500 pairs of gloves this fall. They've also published an open-source instruction manual online for others who want to try to build their own glove at home. They have also formed a nonprofit and plan to use a sliding scale price model to help users manage the cost.

“This project exemplifies what we strive for at the OEDK — empowering students to translate cutting-edge research into real-world solutions,” Oden added in the release. “Emmie and Tomi have shown extraordinary initiative and empathy in developing a device that could bring meaningful relief to people living with Parkinson’s, no matter their resources.”