This week's roundup of Houston innovators includes Aziz Gilani of Mercury, Yaxin Wang of the Texas Heart Institute, and Atul Varadhachary of Fannin Innovation. Photos courtesy

Editor's note: Welcome to another Monday edition of Innovators to Know. Today I'm introducing you to three Houstonians to read up about — three individuals behind recent innovation and startup news stories in Houston as reported by InnovationMap. Learn more about them and their recent news below by clicking on each article.


Aziz Gilani, managing director at Mercury

Aziz Gilani, managing director at Mercury, joins the Houston Innovators Podcast. Photo via LinkedIn

Aziz Gilani's career in tech dates back to when he'd ride his bike from Clear Lake High School to a local tech organization that was digitizing manuals from mission control. After years working on every side of the equation of software technology, he's in the driver's seat at a local venture capital firm deploying funding into innovative software businesses.

As managing director at Mercury, the firm he's been at since 2008, Gilani looks for promising startups within the software-as-a-service space — everything from cloud computing and data science and beyond.

"Once a year at Mercury, we sit down with our partners and talk about the next investment cycle and the focuses we have for what makes companies stand out," Gilani says on the Houston Innovators Podcast. "The current software investment cycle is very focused on companies that have truly achieved product-market fit and are showing large customer adoption." Read more.


Yaxin Wang, director of the Texas Heart Institute's Innovative Device & Engineering Applications Lab

The project is funded by a four-year, $7.8 million grant. THI will use about $2.94 million of that to fund its part of the research. Photo via texasheart.org

The United States Department of Defense has awarded a grant that will allow the Texas Heart Institute and Rice University to continue to break ground on a novel left ventricular assist device (LVAD) that could be an alternative to current devices that prevent heart transplantation and are a long-term option in end-stage heart failure.

The grant is part of the DOD’s Congressionally Directed Medical Research Programs (CDMRP). It was awarded to Georgia Institute of Technology, one of four collaborators on the project that will be designed and evaluated by the co-investigator Yaxin Wang. Wang is part of O.H. “Bud” Frazier’s team at Texas Heart Institute, where she is director of Innovative Device & Engineering Applications Lab. The other institution working on the new LVAD is North Carolina State University.

The project is funded by a four-year, $7.8 million grant. THI will use about $2.94 million of that to fund its part of the research. As Wang explained to us last year, an LVAD is a minimally invasive device that mechanically pumps a person’s own heart. Frazier claims to have performed more than 900 LVAD implantations, but the devices are far from perfect. Read more.

Atul Varadhachary, managing director of Fannin Innovation

Atul Varadhachary also serves as CEO and president of Allterum Therapeutics. Photo via LinkedIn

Allterum Therapeutics, a Houston biopharmaceutical company, has been awarded a $12 million product development grant from the Cancer Prevention and Research Institute of Texas (CPRIT).

The funds will support the clinical evaluation of a therapeutic antibody that targets acute lymphoblastic leukemia (ALL), one of the most common childhood cancers.

However, CEO and President Atul Varadhachary, who's also the managing director of Fannin Innovation, tells InnovationMap, “Our mission has grown much beyond ALL.” Read more.

Yaxin Wang is director of THI's Innovative Device & Engineering Applications Lab. Photo via texasheart.org

Houston health tech innovator collaborates on promising medical device funded by DOD

team work

The United States Department of Defense has awarded a grant that will allow the Texas Heart Institute and Rice University to continue to break ground on a novel left ventricular assist device (LVAD) that could be an alternative to current devices that prevent heart transplantation and are a long-term option in end-stage heart failure.

The grant is part of the DOD’s Congressionally Directed Medical Research Programs (CDMRP). It was awarded to Georgia Institute of Technology, one of four collaborators on the project that will be designed and evaluated by the co-investigator Yaxin Wang. Wang is part of O.H. “Bud” Frazier’s team at Texas Heart Institute, where she is director of Innovative Device & Engineering Applications Lab. The other institution working on the new LVAD is North Carolina State University.

The project is funded by a four-year, $7.8 million grant. THI will use about $2.94 million of that to fund its part of the research. As Wang explained to us last year, an LVAD is a minimally invasive device that mechanically pumps a person’s own heart. Frazier claims to have performed more than 900 LVAD implantations, but the devices are far from perfect.

The team working on this new research seeks to minimize near-eventualities like blood clot formation, blood damage, and driveline complications such as infection and limitations in mobility. The four institutions will try to innovate with a device featuring new engineering designs, antithrombotic slippery hydrophilic coatings (SLIC), wireless power transfer systems, and magnetically levitated driving systems.

Wang and her team believe that the non-contact-bearing technology will help to decrease the risk of blood clotting and damage when implanting an LVAD. The IDEA Lab will test the efficacy and safety of the SLIC LVAD developed by the multi-institutional team with a lab-bench-based blood flow loop, but also in preclinical models.

“The Texas Heart Institute continues to be a leading center for innovation in mechanical circulatory support systems,” said Joseph G. Rogers, MD, the president and CEO of THI, in a press release.

“This award will further the development and testing of the SLIC LVAD, a device intended to provide an option for a vulnerable patient population and another tool in the armamentarium of the heart failure teams worldwide.”

If it works as hypothesized, the SLIC LVAD will improve upon current LVAD technology, which will boost quality of life for countless heart patients. But the innovation won’t stop there. Technologies that IDEA Lab is testing include wireless power transfer for medical devices and coatings to reduce blood clotting could find applications in many other technologies that could help patients live longer, healthier lives.

This week's roundup of Houston innovators includes Kelsey Hultberg of Sunnova, Brad Burke of Rice Alliance, and Yaxin Wang of the Texas Heart Institute. Photos courtesy

3 Houston innovators to know this week

who's who

Editor's note: In this week's roundup of Houston innovators to know, I'm introducing you to three local innovators across industries — from health care to energy tech — recently making headlines in Houston innovation.

Kelsey Hultberg, executive vice president of corporate communications and sustainability of Sunnova Energy International

Kelsey Hultberg, executive vice president of corporate communications and sustainability at Sunnova Energy, joins the Houston Innovators Podcast. Photo courtesy of Sunnova

Several years ago, Kelsey Hultberg decided to make a pivot. Looking for a role with career growth opportunities, the communications professional thought she'd find something at an oil and gas company, but then she met John Berger, founder and CEO of Sunnova, who was looking for someone to stand up their communications team amidst the solar energy company's growth.

"He hooked me," Hultberg shares on the Houston Innovators Podcast. "He said, 'I've got big plans for this company. I see where this energy industry is going, I see that we're prime for a transition, and I want to take this company public.' And I started a few weeks later."

Hultberg has been telling the story for Sunnova — which equips customers with solar and storage technology, providing them with energy independence — ever since, through scaling, new technologies, and its IPO in 2019. Read more.

Houston Innovation Awards names longtime Rice leader as 2023 Trailblazer

Brad Burke has been named the 2023 Trailblazer Award recipient. Photo via alliance.rice.edu

In less than a month, all of Houston's innovation community's movers and shakers will gather to celebrate the Houston Innovation Awards, and the night's first honoree has officially been named.

Brad Burke, managing director of the Rice Alliance for Technology and Entrepreneurship, was selected to receive the 2023 Trailblazer Award. The award was established to recognize an individual who has already left a profound impact on Houston's business and innovation ecosystem and is dedicated to continuing to support Houston and its entrepreneurs.

The award, which is selected from a group of internal and external nominations, was decided by a vote of the 2023 awards judges, who represent Houston's business, investment, and entrepreneurial community across industries. Read more.

Yaxin Wang leads the IDEA Lab at the Texas Heart Institute. Photo via texasheart.org

Meet Yaxin Wang, PhD. The research engineer leads the IDEA Lab at the Texas Heart Institute. IDEA stands for Innovative Device & Engineering Applications, an apt description of what Wang and her colleagues do. She’s currently focused intensely on projects that could radically change transplantation for patients in need of an artificial heart or new, healthy lungs.

Specifically, Wang is helping to develop a pediatric left ventricular assist device (NeoVAD) to mechanically pump that part of the heart in infants and small children born with heart defects.

“There aren’t a lot of options for very small kids,” explains Wang. “That’s why we’re working on an implantable LVAD for very young kids.” Read more.

Yaxin Wang leads the IDEA Lab at the Texas Heart Institute. Photo via texasheart.org

Houston innovator backed by NIH grant tackles congenital heart disease in pediatric patients

good idea

In 1969, Dr. Denton A. Cooley implanted the first total artificial heart in a living patient. Most Houstonians know Cooley’s name, but fewer can name his colleague, Dr. Domingo Liotta, who created the device. Liotta died last year at the age of 97, but his work continues at the Texas Heart Institute.

Meet Yaxin Wang, PhD. The research engineer leads the IDEA Lab at THI. IDEA stands for Innovative Device & Engineering Applications, an apt description of what Wang and her colleagues do. She’s currently focused intensely on projects that could radically change transplantation for patients in need of an artificial heart or new, healthy lungs.

Specifically, Wang is helping to develop a pediatric left ventricular assist device (NeoVAD) to mechanically pump that part of the heart in infants and small children born with heart defects.

“There aren’t a lot of options for very small kids,” explains Wang. “That’s why we’re working on an implantable LVAD for very young kids.”

In fact, as many as 14,000 children with congenital heart disease are hospitalized each year waiting for a new heart, but only around 500 pediatric transplants actually take place.

Essentially, once patients reach their teens, their chest cavities are large enough for an adult donor heart. But smaller children means smaller rib cages and fewer available hearts. For children born with heart disease, Wang’s LVAD could be a lifesaver. Because she has crafted minimally invasive devices that were developed for long-term use, patients could live far longer than before.

The project, funded by a $2.8 million NIH grant, has a big name attached. Dr. O.H. Frazier is a THI legend who claims to have performed 900 LVAD implantations, not to mention some 1,200 heart transplants. In April, the team published their initial findings regarding the success of and improvements in making rotary LVADs over the last half-century.

A different team, also led by Frazier and Wang, received a pair of grants this summer. That includes $2.8 million from the NIH and a total of $7.8 million from a DoD focused program and a THI sub-award. Their work will center on a novel centrifugal left-ventricular assist device intended for end-stage heart failure patients, a potentially safer alternative to a heart transplant.

But Wang isn’t solely focused on the heart. Working with Dr. Gabriel Loor, a cardiothoracic surgeon at Baylor College of Medicine, Wang is also responsible for a method of preserving the lungs for a longer stretch of time, which would allow for further transport, and in the more distant future, potential genetic modification before transplantation. Using animal models for the moment, “they can survive for several hours without any issues,” says Wang.

The pioneering researcher is well on her way to making a name for herself at the Texas Heart Institute and beyond. And soon, she’ll be saving countless lives.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Rice University launches hub in India to drive education, tech innovation abroad

global mission

Rice University is launching Rice Global India, which is a strategic initiative to expand India’s rapidly growing education and technology sectors.

“India is a country of tremendous opportunity, one where we see the potential to make a meaningful impact through collaboration in research, innovation and education,” Rice President Reginald DesRoches says in a news release. “Our presence in India is a critical step in expanding our global reach, and we are excited to engage more with India’s academic leaders and industries to address some of the most pressing challenges of our time.”

The new hub will be in the country’s third-largest city and the center of the country’s high-tech industry, Bengaluru, India, and will include collaborations with top-tier research and academic institutions.

Rice continues its collaborations with institutions like the Indian Institute of Technology (IIT) Kanpur and the Indian Institute of Science (IISc) Bengaluru. The partnerships are expected to advance research initiatives, student and faculty exchanges and collaborations in artificial intelligence, biotechnology and sustainable energy.

India was a prime spot for the location due to the energy, climate change, artificial intelligence and biotechnology studies that align with Rice’s research that is outlined in its strategic plan Momentous: Personalized Scale for Global Impact.

“India’s position as one of the world’s fastest-growing education and technology markets makes it a crucial partner for Rice’s global vision,” vice president for global at Rice Caroline Levander adds. “The U.S.-India relationship, underscored by initiatives like the U.S.-India Initiative on Critical and Emerging Technology, provides fertile ground for educational, technological and research exchanges.”

On November 18, the university hosted a ribbon-cutting ceremony in Bengaluru, India to help launch the project.

“This expansion reflects our commitment to fostering a more interconnected world where education and research transcend borders,” DesRoches says.

UH-backed project secures $3.6M to transform CO2 into sustainable fuel with cutting-edge tech

funds granted

A University of Houston-associated project was selected to receive $3.6 million from the U.S. Department of Energy’s Advanced Research Projects Agency-Energy that aims to transform sustainable fuel production.

Nonprofit research institute SRI is leading the project “Printed Microreactor for Renewable Energy Enabled Fuel Production” or PRIME-Fuel, which will try to develop a modular microreactor technology that converts carbon dioxide into methanol using renewable energy sources with UH contributing research.

“Renewables-to-liquids fuel production has the potential to boost the utility of renewable energy all while helping to lay the groundwork for the Biden-Harris Administration’s goals of creating a clean energy economy,” U.S. Secretary of Energy Jennifer M. Granholm says in an ARPA-E news release.

The project is part of ARPA-E’s $41 million Grid-free Renewable Energy Enabling New Ways to Economical Liquids and Long-term Storage program (or GREENWELLS, for short) that also includes 14 projects to develop technologies that use renewable energy sources to produce sustainable liquid fuels and chemicals, which can be transported and stored similarly to gasoline or oil, according to a news release.

Vemuri Balakotaiah and Praveen Bollini, faculty members of the William A. Brookshire Department of Chemical and Biomolecular Engineering, are co-investigators on the project. Rahul Pandey, is a UH alum, and the senior scientist with SRI and principal investigator on the project.

Teams working on the project will develop systems that use electricity, carbon dioxide and water at renewable energy sites to produce renewable liquid renewable fuels that offer a clean alternative for sectors like transportation. Using cheaper electricity from sources like wind and solar can lower production costs, and create affordable and cleaner long-term energy storage solutions.

Researchers Rahul Pandey, senior scientist with SRI and principal investigator (left), and Praveen Bollini, a University of Houston chemical engineering faculty, are key contributors to the microreactor project. Photo via uh.edu

“As a proud UH graduate, I have always been aware of the strength of the chemical and biomolecular engineering program at UH and kept myself updated on its cutting-edge research,” Pandey says in a news release. “This project had very specific requirements, including expertise in modeling transients in microreactors and the development of high-performance catalysts. The department excelled in both areas. When I reached out to Dr. Bollini and Dr. Bala, they were eager to collaborate, and everything naturally progressed from there.”

The PRIME-Fuel project will use cutting-edge mathematical modeling and SRI’s proprietary Co-Extrusion printing technology to design and manufacture the microreactor with the ability to continue producing methanol even when the renewable energy supply dips as low as 5 percent capacity. Researchers will develop a microreactor prototype capable of producing 30 MJe/day of methanol while meeting energy efficiency and process yield targets over a three-year span. When scaled up to a 100 megawatts electricity capacity plant, it can be capable of producing 225 tons of methanol per day at a lower cost. The researchers predict five years as a “reasonable” timeline of when this can hit the market.

“What we are building here is a prototype or proof of concept for a platform technology, which has diverse applications in the entire energy and chemicals industry,” Pandey continues. “Right now, we are aiming to produce methanol, but this technology can actually be applied to a much broader set of energy carriers and chemicals.”

------

This article originally ran on EnergyCapital.

Houston innovator drives collaboration, access to investment with female-focused group

HOUSTON INNOVATORS PODCAST EPISODE 262

After working in technology in her home country of Pakistan, Samina Farid, who was raised in the United States, found her way to Houston in the '70s where business was booming.

She was recruited to work at Houston Natural Gas — a company that would later merge and create Enron — where she rose through the ranks and oversaw systems development for the company before taking on a role running the pipelines.

"When you're in technology, you're always looking for inefficiencies, and you always see areas where you can improve," Farid says on the Houston Innovators Podcast, explaining that she moved on from Enron in the mid-'80s, which was an exciting time for the industry.

"We had these silos of data across the industry, and I felt like we needed to be communicating better, having a good source of data, and making sure we weren't continuing to have the problems we were having," she says. "That was really the seed that got me started in the idea of building a company."

She co-founded Merrick Systems, a software solutions business for managing oil and gas production, with her nephew, and thus began her own entrepreneurial journey. She came to another crossroads in her career after selling that business in 2014 and surviving her own battle with breast cancer.

"I got involved in investing because the guys used to talk about it — there was always men around me," Farid says. "I was curious."

In 2019, she joined an organization called Golden Seeds. Founded in 2005 in New York, the network of angel investors funding female-founded enterprises has grown to around 280 members across eight chapters. Suzan Deison, CEO of the Houston Women's Chamber, was integral in bringing the organization to Houston, and now Farid leads it as head of the Houston Chapter of Golden Seeds.

For Farid, the opportunity for Houston is the national network of investors — both to connect local female founders to potential capital from coast to coast and to give Houston investors deal flow from across the country.

"It was so hard for me to get funding for my own company," Farid says. "Having access to capital was only on the coasts. Software and startups was too risky."

Now, with Golden Seeds, the opportunity is there — and Farid says its an extremely collaborative investor network, working with local organizations like the Houston Angel Network and TiE Houston.

"With angel investing, when we put our money in, we want these companies to succeed," she says."We want more people to see these companies and to invest in them. We're not competing. We want to work with others to help these companies succeed."