The question isn't whether AI will change work – it's whether we'll use this moment to finally build workplaces that enhance rather than diminish our humanity. Photo via Getty Images

When OpenAI's GPT-4 made headlines by passing the bar exam and scoring in the top 10 percent on medical licensing tests, I noticed something fascinating: everyone focused on AI replacing professionals, but they missed the deeper story. AI isn't just disrupting work – it's exposing fundamental flaws in how we've built our entire workplace ecosystem. It's holding up a mirror to our organizations, revealing just how far we've strayed from what makes us uniquely human.

The World Economic Forum tells us 44 percent of workers' skills will need updating by 2027, but that statistic only scratches the surface. In my conversations with business leaders, I'm watching a transformation unfold in real-time. Take the accounting industry, where I've observed forward-thinking firms like Deloitte and PwC turning their accountants into strategic business advisors while other firms continue training junior staff for tasks that AI will soon handle. This isn't just a skills mismatch – it's a fundamental misunderstanding of human potential.

The challenge runs deeper than individual industries. McKinsey predicts 30 percent of hours worked globally could be automated by 2030, but I believe they're missing a crucial point. We've spent decades designing jobs around industrial-era ideals of efficiency and standardization – the very qualities that make them perfect targets for AI automation. In our obsession with measuring, standardizing, and streamlining everything, we've created workplaces that treat humans like machines rather than the complex, creative beings we are.

What's emerging is a striking paradox: as work becomes more automated, our workplace cultures are growing more disconnected. Microsoft researchers identified a "collaboration deficit" in remote work environments, with 56 percent of employees reporting a decline in workplace friendships. This cultural shift is occurring precisely when we need human connection most. During the Great Resignation of 2021, 47 million Americans quit their jobs, they weren't leaving because of salary considerations or technological inadequacies. The most common reasons cited were lack of human connection, purpose, and authentic leadership.

Yet instead of heeding this wake-up call, the rise of AI is pushing us further apart. A decade ago, the concept of "workplace family" was commonplace – now it's often dismissed as manipulative corporate rhetoric. This shift reveals a troubling blindspot in our thinking about work. Consider this: we spend more than 90,000 hours at work over our lifetime – more time than we spend with our own families – yet we're increasingly treating these relationships as purely transactional. In our rush to establish boundaries and protect ourselves from corporate exploitation, we've overcorrected, creating sterile workplaces stripped of human connection.

This timing couldn't be worse. As someone who studies the intersection of technology and workplace culture, I've observed a clear pattern: the more we automate routine tasks, the more our success depends on distinctly human qualities like trust, emotional sensitivity, and the ability to navigate complex interpersonal dynamics. Yet we're systematically dismantling the very cultural foundations that enable these qualities to flourish. It's as if we're entering a boxing match by tying one hand behind our back – at precisely the moment we need every advantage we can get.

The real crisis isn't that AI might replace jobs – it's that we're creating workplace environments that suppress the very qualities that make us irreplaceable. When we treat our colleagues as mere interfaces rather than complex human beings, we don't just damage relationships – we damage our capacity for innovation, creativity, and the kind of deep collaboration that complex problem-solving requires.

Some companies are starting to get it right. When I look at examples like IKEA, who chose to retrain their call center workers as interior design advisors rather than simply replacing them with chatbots, I see a glimpse of what's possible. They recognized something profound: you can't automate the human ability to understand what a frustrated customer really needs, or the intuition to read between the lines of what they're saying.

This is what I call the "human edge" – and it's far more nuanced than most leadership teams realize. It's the marketing manager who can sense team tension during a video call and address it before it derails a project. It's the sales representative who builds such strong relationships that clients stay loyal through market upheavals. It's the team leader who knows exactly when to push for more and when to show compassion. These aren't just nice-to-have soft skills – they're becoming our most valuable business assets.

But here's the challenge: we're still trying to measure workplace success like it's 1990. We track productivity metrics, sales numbers, and project timelines, but how do we quantify someone's ability to defuse a tense client situation? How do we measure the value of a team leader who creates an environment where people feel safe to innovate? These human capabilities – empathy, emotional intelligence, relationship building, creative problem-solving – are increasingly what separate successful companies from failing ones, yet they're nearly impossible to capture in a performance review.

When I talk to business leaders, I tell them bluntly: if a job can be reduced to a process, AI will eventually do it better. Our value lies in all the messy, human things that happen between the bullet points of a job description. Instead of asking "How many tasks did you complete?" we should be asking "How did you help your team navigate that difficult change?" Instead of training people to follow processes, we should be developing their ability to build relationships and navigate complexity.

It's time we started treating these human capabilities not as soft skills, but as core business competencies. The question isn't whether AI will change work – it's whether we'll use this moment to finally build workplaces that enhance rather than diminish our humanity.

———

Nada Ahmed is the founding partner at Houston-based Energy Tech Nexus and author of Amazon Bestseller “Determined to Lead- The Disruptive Woman's Guide to Stop Playing Small and Transform your Career through Agile Leadership.”

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

TMC, Memorial Hermann launch partnership to spur new patient care technologies

medtech partnership

Texas Medical Center and Memorial Hermann Health System have launched a new collaboration for developing patient care technology.

Through the partnership, Memorial Hermann employees and physicians will now be able to participate in the TMC Center for Device Innovation (CDI), which will assist them in translating product innovation ideas into working prototypes. The first group of entrepreneurs will pitch their innovations in early 2026, according to a release from TMC.

“Memorial Hermann is excited to launch this new partnership with the TMC CDI,” Ini Ekiko Thomas, vice president of information technology at Memorial Hermann, said in the news release. “As we continue to grow (a) culture of innovation, we look forward to supporting our employees, affiliated physicians and providers in new ways.”

Mentors from Memorial Hermann, TMC Innovation and industry experts with specialties in medicine, regulatory strategy, reimbursement planning and investor readiness will assist with the program. The innovators will also gain access to support systems like product innovation and translation strategy, get dedicated engineering and machinist resources and personal workbench space at the CDI.

“The prototyping facilities and opportunities at TMC are world-class and globally recognized, attracting innovators from around the world to advance their technologies,” Tom Luby, chief innovation officer at TMC Innovation Factor, said in the release.

Memorial Hermann says the partnership will support its innovation hub’s “pilot and scale approach” and hopes that it will extend the hub’s impact in “supporting researchers, clinicians and staff in developing patentable, commercially viable products.”

“We are excited to expand our partnership with Memorial Hermann and open the doors of our Center for Device Innovation to their employees and physicians—already among the best in medical care,” Luby added in the release. “We look forward to seeing what they accomplish next, utilizing our labs and gaining insights from top leaders across our campus.”

Google to invest $40 billion in AI data centers in Texas

Google is investing a huge chunk of money in Texas: According to a release, the company will invest $40 billion on cloud and artificial intelligence (AI) infrastructure, with the development of new data centers in Armstrong and Haskell counties.

The company announced its intentions at a meeting on November 14 attended by federal, state, and local leaders including Gov. Greg Abbott who called it "a Texas-sized investment."

Google will open two new data center campuses in Haskell County and a data center campus in Armstrong County.

Additionally, the first building at the company’s Red Oak campus in Ellis County is now operational. Google is continuing to invest in its existing Midlothian campus and Dallas cloud region, which are part of the company’s global network of 42 cloud regions that deliver high-performance, low-latency services that businesses and organizations use to build and scale their own AI-powered solutions.

Energy demands

Google is committed to responsibly growing its infrastructure by bringing new energy resources onto the grid, paying for costs associated with its operations, and supporting community energy efficiency initiatives.

One of the new Haskell data centers will be co-located with — or built directly alongside — a new solar and battery energy storage plant, creating the first industrial park to be developed through Google’s partnership with Intersect and TPG Rise Climate announced last year.

Google has contracted to add more than 6,200 megawatts (MW) of net new energy generation and capacity to the Texas electricity grid through power purchase agreements (PPAs) with energy developers such as AES Corporation, Enel North America, Intersect, Clearway, ENGIE, SB Energy, Ørsted, and X-Elio.

Water demands

Google’s three new facilities in Armstrong and Haskell counties will use air-cooling technology, limiting water use to site operations like kitchens. The company is also contributing $2.6 million to help Texas Water Trade create and enhance up to 1,000 acres of wetlands along the Trinity-San Jacinto Estuary. Google is also sponsoring a regenerative agriculture program with Indigo Ag in the Dallas-Fort Worth area and an irrigation efficiency project with N-Drip in the Texas High Plains.

In addition to the data centers, Google is committing $7 million in grants to support AI-related initiatives in healthcare, energy, and education across the state. This includes helping CareMessage enhance rural healthcare access; enabling the University of Texas at Austin and Texas Tech University to address energy challenges that will arise with AI, and expanding AI training for Texas educators and students through support to Houston City College.

---

This article originally appeared on CultureMap.com.

TMCi names 11 global startups to latest HealthTech Accelerator cohort

new class

Texas Medical Center Innovation has named 11 medtech startups from around the world to its latest HealthTech Accelerator cohort.

Members of the accelerator's 19th cohort will participate in the six-month program, which kicked off this month. They range from startups developing on-the-go pelvic floor monitoring to 3D-printed craniofacial and orthopedic implants. Each previously participated in TMCi's bootcamp before being selected to join the accelerator. Through the HealthTech Accelerator, founders will work closely with TMC specialists, researchers, top-tier hospital experts and seasoned advisors to help grow their companies and hone their clinical trials, intellectual property, fundraising and more.

“This cohort of startups is tackling some of today’s most pressing clinical challenges, from surgery and respiratory care to diagnostics and women’s health," Tom Luby, chief innovation officer at Texas Medical Center, said in a news release. "At TMC, we bring together the minds behind innovation—entrepreneurs, technology leaders, and strategic partners—to help emerging companies validate, scale, and deliver solutions that make a real difference for patients here and around the world. We look forward to seeing their progress and global impact through the HealthTech Accelerator and the support of our broader ecosystem.”

The 2025 HealthTech Accelerator cohort includes:

  • Houston-based Respiree, which has created an all-in-one cardiopulmonary platform with wearable sensors for respiratory monitoring that uses AI to track breathing patterns and detect early signs of distress
  • College Station-based SageSpectra, which designs an innovative patch system for real-time, remote monitoring of temperature and StO2 for assessing vascular occlusion, infection, and other surgical flap complications
  • Austin-based Dynamic Light, which has developed a non-invasive imaging technology that enables surgeons to visualize blood flow in real-time without the need for traditional dyes
  • Bangkok, Thailand-based OsseoLabs, which develops AI-assisted, 3D-printed patient-specific implants for craniofacial and orthopedic surgeries
  • Sydney, Australia-based Roam Technologies, which has developed a portable oxygen therapy system (JUNO) that provides real-time oxygen delivery optimization for patients with chronic conditions
  • OptiLung, which develops 3D-printed extracorporeal blood oxygenation devices designed to optimize blood flow and reduce complications
  • Bengaluru, India-based Dozee, which has created a smart remote patient monitor platform that uses under-the-mattress bed sensors to capture vital signs through continuous monitoring
  • Montclair, New Jersey-based Endomedix, which has developed a biosurgical fast-acting absorbable hemostat designed to eliminate the risk of paralysis and reoperation due to device swelling
  • Williston, Vermont-based Xander Medical, which has designed a biomechanical innovation that addresses the complications and cost burdens associated with the current methods of removing stripped and broken surgical screws
  • Salt Lake City, Utah-based Freyya, which has developed an on-the-go pelvic floor monitoring and feedback device for people with pelvic floor dysfunction
  • The Netherlands-based Scinvivo, which has developed optical imaging catheters for bladder cancer diagnostics