Nauticus Robotics and Wood have entered into a strategic partnership. Image via nauticusrobotics.com

Webster-based Nauticus Robotics, a developer of offshore subsea and surface robots and software, has entered a strategic partnership with Scottish energy consulting and engineering firm Wood, which employs about 11,000 people in Houston.

Nauticus and Wood are teaming up to grab a share of the $2.5 trillion-a-year marketplace in the ocean economy.

“This is a great example of the offshore digitization effort and novel use of emerging offshore robotics. Combining these two innovations make perfect sense,” says Todd Newell, senior vice president of business development at Nauticus.

In the long term, Nauticus hopes to replace large human-operated ships that deploy submersible vehicles with its own fleet of green subsea and surface ocean-going robots. Its robots are Hydronaut, a small surface vessel that can be operated by people, and Aquanaut, a tetherless underwater robot. The technology is aimed at sectors such as offshore renewables, oil and gas, government, and aquaculture.

In December, Nauticus and Greenwich, Connecticut-based CleanTech Acquisition Corp., a special purpose acquisition corporation (SPAC), signed a deal that would result in Nauticus becoming a public company. The SPAC merger, expected to close before June 30, would value Nauticus at $561 million.

Nauticus generated revenue of about $8.2 million in 2021. Revenue is projected to exceed $90 million in 2023. The company was founded in 2014 as Houston Mechatronics; it rebranded last year.

Wood generated more than $6.4 billion in revenue last year. It employs about 40,000 people around the world.

Among other things, the robotic capabilities will enable constant monitoring of oil and gas assets, and earlier detection of methane emissions. Photo courtesy of Wood

Robots roll into Houston operations of global energy industry giant

new fleet

Houston employees of Wood, a Scottish giant in engineering and management services, are helping drive the robot revolution in the oil and gas industry.

Wood recently received nearly $3 million in funding from Canada’s province of Newfoundland and Labrador to support development of robots that will carry out autonomous inspection and maintenance of onshore and offshore oil and gas infrastructure in that region.

“As we prepare for the transition to renewable energy, we do it knowing that oil and gas will be needed for the foreseeable future. Our government will continue to work to support the women and men who work in the oil and gas industry as we collaborate with industry to support new innovative ideas to further reduce greenhouse gas emissions,” Andrew Furey, premier of Newfoundland and Labrador, says in a news release.

Among other things, the robotic capabilities will enable constant monitoring of oil and gas assets, and earlier detection of methane emissions. Wood says that if the Canadian project succeeds, it could lead to the rollout of more robots.

Some of Wood’s robots will be roaming the show floor at this year’s Offshore Technology Conference (OTC), set for May 2-5 at NRG Park. An OTC session on May 3 will shine a light on the emerging sector of offshore robotic technologies. Rami Jabari of Houston-based ExxonMobil and Ross Doak of Shell, which has a major presence in Houston, are co-chairs of the session. Both ExxonMobil and Shell have embraced robotics in recent years.

The Houston office of Wood — which employs nearly 11,000 full-time workers locally and whose 2020 global revenue totaled $7.5 billion — has been toiling away on the robotic technology for several years. The technology already has undergone a successful pilot in Wyoming, where robots and drones have captured data to create 3D models of oil and gas assets.

“In a nutshell, this technology is making routine inspections and maintenance of assets safer and more efficient, leading to reduced carbon emissions and lower-cost sustainable operations,” according to Wood.

A key focus of the robotic technology is helping more than 100 countries that have pledged to slash methane emissions by 30 percent before 2030 compared with 2020 levels. According to the United Nations, decreasing methane emissions is one of the most cost-effective ways to achieve global goals tied to climate change.

Wood, whose U.S. locations are in Houston and Alpharetta, Georgia, isn’t the only company with strong local ties that’s innovating in robotics for the oil and gas sector.

For instance, Webster-based Nauticus Robotics specializes in offshore robotics for the oil and gas sector and other industries. Nauticus, previously branded as Houston Mechatronics, is preparing to merge with CleanTech Acquisition, a publicly traded SPAC, or special acquisition company.

The pending merger values Nauticus at $560 million. The company envisions generating revenue of more than $90 million in 2023, up from an estimated $8.2 million this year.

The first product from Nauticus, founded by former NASA engineers, is called Aquanaut.

“Aquanaut is an unmanned underwater vehicle that can transform itself from a nimble submarine designed for long-distance cruising into a half-humanoid robot capable of carrying out complex manipulation tasks. It can inspect subsea oil and gas infrastructure, operate valves, and use tools,” according to the Institute of Electrical and Electronics Engineers (IEEE).

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Rice University lands $18M to revolutionize lymphatic disease detection

fresh funding

An arm of the U.S. Department of Health and Human Services has awarded $18 million to scientists at Rice University for research that has the potential to revolutionize how lymphatic diseases are detected and help increase survivability.

The lymphatic system is the network of vessels all over the body that help eliminate waste, absorb fat and maintain fluid balance. Diseases in this system are often difficult to detect early due to the small size of the vessels and the invasiveness of biopsy testing. Though survival rates of lymph disease have skyrocketed in the United States over the last five years, it still claims around 200,000 people in the country annually.

Early detection of complex lymphatic anomalies (CLAs) and lymphedema is essential in increasing successful treatment rates. That’s where Rice University’s SynthX Center, directed by Han Xiao and Lei Li, an assistant professor of electrical and computer engineering, comes in.

Aided by researchers from Texas Children’s Hospital, Baylor College of Medicine, the University of Texas at Dallas and the University of Texas Southwestern Medical Center, the center is pioneering two technologies: the Visual Imaging System for Tracing and Analyzing Lymphatics with Photoacoustics (VISTA-LYMPH) and Digital Plasmonic Nanobubble Detection for Protein (DIAMOND-P).

Simply put, VISTA-LYMPH uses photoacoustic tomography (PAT), a combination of light and sound, to more accurately map the tiny vessels of the lymphatic system. The process is more effective than diagnostic tools that use only light or sound, independent of one another. The research award is through the Advanced Research Projects Agency for Health (ARPA-H) Lymphatic Imaging, Genomics and pHenotyping Technologies (LIGHT) program, part of the U.S. HHS, which saw the potential of VISTA-LYMPH in animal tests that produced finely detailed diagnostic maps.

“Thanks to ARPA-H’s award, we will build the most advanced PAT system to image the body’s lymphatic network with unprecedented resolution and speed, enabling earlier and more accurate diagnosis,” Li said in a news release.

Meanwhile, DIAMOND-P could replace the older, less exact immunoassay. It uses laser-heated vapors of plasmonic nanoparticles to detect viruses without having to separate or amplify, and at room temperature, greatly simplifying the process. This is an important part of greater diagnosis because even with VISTA-LYMPH’s greater imaging accuracy, many lymphatic diseases still do not appear. Detecting biological markers is still necessary.

According to Rice, the efforts will help address lymphatic disorders, including Gorham-Stout disease, kaposiform lymphangiomatosis and generalized lymphatic anomaly. They also could help manage conditions associated with lymphatic dysfunction, including cancer metastasis, cardiovascular disease and neurodegeneration.

“By validating VISTA-LYMPH and DIAMOND-P in both preclinical and clinical settings, the team aims to establish a comprehensive diagnostic pipeline for lymphatic diseases and potentially beyond,” Xiao added in the release.

The ARPA-H award funds the project for up to five years.

Houston doctor wins NIH grant to test virtual reality for ICU delirium

Virtual healing

Think of it like a reverse version of The Matrix. A person wakes up in a hospital bed and gets plugged into a virtual reality game world in order to heal.

While it may sound far-fetched, Dr. Hina Faisal, a Houston Methodist critical care specialist in the Department of Surgery, was recently awarded a $242,000 grant from the National Institute of Health to test the effects of VR games on patients coming out of major surgery in the intensive care unit (ICU).

The five-year study will focus on older patients using mental stimulation techniques to reduce incidences of delirium. The award comes courtesy of the National Institute on Aging K76 Paul B. Beeson Emerging Leaders Career Development Award in Aging.

“As the population of older adults continues to grow, the need for effective, scalable interventions to prevent postoperative complications like delirium is more important than ever,” Faisal said in a news release.

ICU delirium is a serious condition that can lead to major complications and even death. Roughly 87 percent of patients who undergo major surgery involving intubation will experience some form of delirium coming out of anesthesia. Causes can range from infection to drug reactions. While many cases are mild, prolonged ICU delirium may prevent a patient from following medical advice or even cause them to hurt themselves.

Using VR games to treat delirium is a rapidly emerging and exciting branch of medicine. Studies show that VR games can help promote mental activity, memory and cognitive function. However, the full benefits are currently unknown as studies have been hampered by small patient populations.

Faisal believes that half of all ICU delirium cases are preventable through VR treatment. Currently, a general lack of knowledge and resources has been holding back the advancement of the treatment.

Hopefully, the work of Faisal in one of the busiest medical cities in the world can alleviate that problem as she spends the next half-decade plugging patients into games to aid in their healing.