Nauticus Robotics and Wood have entered into a strategic partnership. Image via nauticusrobotics.com

Webster-based Nauticus Robotics, a developer of offshore subsea and surface robots and software, has entered a strategic partnership with Scottish energy consulting and engineering firm Wood, which employs about 11,000 people in Houston.

Nauticus and Wood are teaming up to grab a share of the $2.5 trillion-a-year marketplace in the ocean economy.

“This is a great example of the offshore digitization effort and novel use of emerging offshore robotics. Combining these two innovations make perfect sense,” says Todd Newell, senior vice president of business development at Nauticus.

In the long term, Nauticus hopes to replace large human-operated ships that deploy submersible vehicles with its own fleet of green subsea and surface ocean-going robots. Its robots are Hydronaut, a small surface vessel that can be operated by people, and Aquanaut, a tetherless underwater robot. The technology is aimed at sectors such as offshore renewables, oil and gas, government, and aquaculture.

In December, Nauticus and Greenwich, Connecticut-based CleanTech Acquisition Corp., a special purpose acquisition corporation (SPAC), signed a deal that would result in Nauticus becoming a public company. The SPAC merger, expected to close before June 30, would value Nauticus at $561 million.

Nauticus generated revenue of about $8.2 million in 2021. Revenue is projected to exceed $90 million in 2023. The company was founded in 2014 as Houston Mechatronics; it rebranded last year.

Wood generated more than $6.4 billion in revenue last year. It employs about 40,000 people around the world.

Among other things, the robotic capabilities will enable constant monitoring of oil and gas assets, and earlier detection of methane emissions. Photo courtesy of Wood

Robots roll into Houston operations of global energy industry giant

new fleet

Houston employees of Wood, a Scottish giant in engineering and management services, are helping drive the robot revolution in the oil and gas industry.

Wood recently received nearly $3 million in funding from Canada’s province of Newfoundland and Labrador to support development of robots that will carry out autonomous inspection and maintenance of onshore and offshore oil and gas infrastructure in that region.

“As we prepare for the transition to renewable energy, we do it knowing that oil and gas will be needed for the foreseeable future. Our government will continue to work to support the women and men who work in the oil and gas industry as we collaborate with industry to support new innovative ideas to further reduce greenhouse gas emissions,” Andrew Furey, premier of Newfoundland and Labrador, says in a news release.

Among other things, the robotic capabilities will enable constant monitoring of oil and gas assets, and earlier detection of methane emissions. Wood says that if the Canadian project succeeds, it could lead to the rollout of more robots.

Some of Wood’s robots will be roaming the show floor at this year’s Offshore Technology Conference (OTC), set for May 2-5 at NRG Park. An OTC session on May 3 will shine a light on the emerging sector of offshore robotic technologies. Rami Jabari of Houston-based ExxonMobil and Ross Doak of Shell, which has a major presence in Houston, are co-chairs of the session. Both ExxonMobil and Shell have embraced robotics in recent years.

The Houston office of Wood — which employs nearly 11,000 full-time workers locally and whose 2020 global revenue totaled $7.5 billion — has been toiling away on the robotic technology for several years. The technology already has undergone a successful pilot in Wyoming, where robots and drones have captured data to create 3D models of oil and gas assets.

“In a nutshell, this technology is making routine inspections and maintenance of assets safer and more efficient, leading to reduced carbon emissions and lower-cost sustainable operations,” according to Wood.

A key focus of the robotic technology is helping more than 100 countries that have pledged to slash methane emissions by 30 percent before 2030 compared with 2020 levels. According to the United Nations, decreasing methane emissions is one of the most cost-effective ways to achieve global goals tied to climate change.

Wood, whose U.S. locations are in Houston and Alpharetta, Georgia, isn’t the only company with strong local ties that’s innovating in robotics for the oil and gas sector.

For instance, Webster-based Nauticus Robotics specializes in offshore robotics for the oil and gas sector and other industries. Nauticus, previously branded as Houston Mechatronics, is preparing to merge with CleanTech Acquisition, a publicly traded SPAC, or special acquisition company.

The pending merger values Nauticus at $560 million. The company envisions generating revenue of more than $90 million in 2023, up from an estimated $8.2 million this year.

The first product from Nauticus, founded by former NASA engineers, is called Aquanaut.

“Aquanaut is an unmanned underwater vehicle that can transform itself from a nimble submarine designed for long-distance cruising into a half-humanoid robot capable of carrying out complex manipulation tasks. It can inspect subsea oil and gas infrastructure, operate valves, and use tools,” according to the Institute of Electrical and Electronics Engineers (IEEE).

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

MD Anderson makes AI partnership to advance precision oncology

AI Oncology

Few experts will disagree that data-driven medicine is one of the most certain ways forward for our health. However, actually adopting it comes at a steep curve. But what if using the technology were democratized?

This is the question that SOPHiA GENETICS has been seeking to answer since 2011 with its universal AI platform, SOPHiA DDM. The cloud-native system analyzes and interprets complex health care data across technologies and institutions, allowing hospitals and clinicians to gain clinically actionable insights faster and at scale.

The University of Texas MD Anderson Cancer Center has just announced its official collaboration with SOPHiA GENETICS to accelerate breakthroughs in precision oncology. Together, they are developing a novel sequencing oncology test, as well as creating several programs targeted at the research and development of additional technology.

That technology will allow the hospital to develop new ways to chart the growth and changes of tumors in real time, pick the best clinical trials and medications for patients and make genomic testing more reliable. Shashikant Kulkarni, deputy division head for Molecular Pathology, and Dr. J. Bryan, assistant professor, will lead the collaboration on MD Anderson’s end.

“Cancer research has evolved rapidly, and we have more health data available than ever before. Our collaboration with SOPHiA GENETICS reflects how our lab is evolving and integrating advanced analytics and AI to better interpret complex molecular information,” Dr. Donna Hansel, division head of Pathology and Laboratory Medicine at MD Anderson, said in a press release. “This collaboration will expand our ability to translate high-dimensional data into insights that can meaningfully advance research and precision oncology.”

SOPHiA GENETICS is based in Switzerland and France, and has its U.S. offices in Boston.

“This collaboration with MD Anderson amplifies our shared ambition to push the boundaries of what is possible in cancer research,” Dr. Philippe Menu, chief product officer and chief medical officer at SOPHiA GENETICS, added in the release. “With SOPHiA DDM as a unifying analytical layer, we are enabling new discoveries, accelerating breakthroughs in precision oncology and, most importantly, enabling patients around the globe to benefit from these innovations by bringing leading technologies to all geographies quickly and at scale.”

Houston company plans lunar mission to test clean energy resource

lunar power

Houston-based natural resource and lunar development company Black Moon Energy Corporation (BMEC) announced that it is planning a robotic mission to the surface of the moon within the next five years.

The company has engaged NASA’s Jet Propulsion Laboratory (JPL) and Caltech to carry out the mission’s robotic systems, scientific instrumentation, data acquisition and mission operations. Black Moon will lead mission management, resource-assessment strategy and large-scale operations planning.

The goal of the year-long expedition will be to gather data and perform operations to determine the feasibility of a lunar Helium-3 supply chain. Helium-3 is abundant on the surface of the moon, but extremely rare on Earth. BMEC believes it could be a solution to the world's accelerating energy challenges.

Helium-3 fusion releases 4 million times more energy than the combustion of fossil fuels and four times more energy than traditional nuclear fission in a “clean” manner with no primary radioactive products or environmental issues, according to BMEC. Additionally, the company estimates that there is enough lunar Helium-3 to power humanity for thousands of years.

"By combining Black Moon's expertise in resource development with JPL and Caltech's renowned scientific and engineering capabilities, we are building the knowledge base required to power a new era of clean, abundant, and affordable energy for the entire planet," David Warden, CEO of BMEC, said in a news release.

The company says that information gathered from the planned lunar mission will support potential applications in fusion power generation, national security systems, quantum computing, radiation detection, medical imaging and cryogenic technologies.

Black Moon Energy was founded in 2022 by David Warden, Leroy Chiao, Peter Jones and Dan Warden. Chiao served as a NASA astronaut for 15 years. The other founders have held positions at Rice University, Schlumberger, BP and other major energy space organizations.

Houston co. makes breakthrough in clean carbon fiber manufacturing

Future of Fiber

Houston-based Mars Materials has made a breakthrough in turning stored carbon dioxide into everyday products.

In partnership with the Textile Innovation Engine of North Carolina and North Carolina State University, Mars Materials turned its CO2-derived product into a high-quality raw material for producing carbon fiber, according to a news release. According to the company, the product works "exactly like" the traditional chemical used to create carbon fiber that is derived from oil and coal.

Testing showed the end product met the high standards required for high-performance carbon fiber. Carbon fiber finds its way into aircraft, missile components, drones, racecars, golf clubs, snowboards, bridges, X-ray equipment, prosthetics, wind turbine blades and more.

The successful test “keeps a promise we made to our investors and the industry,” Aaron Fitzgerald, co-founder and CEO of Mars Materials, said in the release. “We proved we can make carbon fiber from the air without losing any quality.”

“Just as we did with our water-soluble polymers, getting it right on the first try allows us to move faster,” Fitzgerald adds. “We can now focus on scaling up production to accelerate bringing manufacturing of this critical material back to the U.S.”

Mars Materials, founded in 2019, converts captured carbon into resources, such as carbon fiber and wastewater treatment chemicals. Investors include Untapped Capital, Prithvi Ventures, Climate Capital Collective, Overlap Holdings, BlackTech Capital, Jonathan Azoff, Nate Salpeter and Brian Andrés Helmick.

---

This article originally appeared on our sister site, EnergyCapitalHTX.com.