The Welch Foundation has awarded funding through two of its newest grant programs. Photo via Getty Images.

Houston-based The Welch Foundation has issued $700,000 in additional funding to support chemical research through two of its newest grant programs.

The foundation has named the recipients of its Welch eXperimental (WelchX) Collaboration Retreat and Pilot Grants and the Welch Postdoctoral Fellows of the Life Sciences Research Foundation Grants.

The WelchX grants were awarded to teams of two Texas researchers who presented "innovative and collaborative ideas" addressing challenges in the clean energy space, according to the foundation.

Researchers from Texas universities gathered in Houston earlier this summer to discuss the theme “Chemical Research for Grand Challenges." They then paired off into nine teams and submitted proposals for the $100,000 pilot grants. The seven selected teams, several with ties to Houston, and their research topics include:

  • Yimo Han, Rice University, and Yuanyue Liu, The University of Texas at Austin, “Stabilizing Copper Electrocatalysts for CO2 Conversion”
  • Ognjen Miljanic, University of Houston, and Indrajit Srivastava, Texas Tech University, “Ping-Pong' Afterglow Luminescence in Self-Assembled Molecular Cubes”
  • Raúl Hernández Sánchez, Rice University, and Andy Thomas, Texas A&M University, “Accelerating Magnetic Resonance Imaging Contrast Agent Discovery via Rapid Injection NMR: Improving the Detection of Lithium for Disease Diagnostics”
  • Benjamin Janesko, Texas Christian University, and MD Masud Rana, Lamar University, “Cyber Twin Chemical Ensembles for Near-Infrared-Emitting Graphene Quantum Dot Therapeutics”
  • Ivan Korendovych, Baylor University, and Dino Villagrán, The University of Texas at El Paso, “Selective Bio-Inspired Electrochemical Probes for PFAS Analysis and Degradation”
  • Samantha Kristufek, Texas Tech University, and Kayla Green, Texas Christian University, “CIRCUIT: Critical Ion Recovery using Conductive and Ultrafiltration Intelligent Technology”
  • Fang Xu, The University of Texas at San Antonio, and Hong Wang, University of North Texas, “Visualize Molecular Adsorption on Supported Ni-porphyrin Model Catalysts via Substitute Effect”

The Welch Postdoctoral Fellows of the Life Sciences Research Foundation provides three-year fellowships to recent PhD graduates to support clinical research careers in Texas.

The foundation previously announced that it would name fellows from Rice University and Baylor University who would receive $100,000 annually for three years. This year's recipients and their research topics include:

  • Teng Yuan, Rice University, “Unlocking New Chemistry of Nonheme Iron Enzymes for α-Amino Acids and γ-Lactones Synthesis”
  • Katelyn Baumler, Baylor University, "Crystal Growth of Ln2Fe4Sb5 Phases Toward the Study of Novel Quantum Properties”

“As these programs become more established, it is thrilling to see the new research our awardees are exploring,” Adam Kuspa, president of The Welch Foundation, said in a news release. “The Foundation is very pleased by the applications that we continue to receive describing exciting new research projects to advance chemical research.”

This additional funding comes on the heels of the foundation doling out $27 million for chemical research, equipment and postdoctoral fellowships earlier this summer. The foundation made 85 grants to faculty at 16 Texas institutions at the time. Read more here.

In all, the Welch Foundation on June 4 announced more than $40.5 million in academic research grants, equipment grants, and fellowships. Photo via Getty Images

Texas organization grants over $40M to chemistry research in Houston and beyond

fresh funding

Two local professors are among the newly announced recipients of funding from the Houston-based Welch Foundation, which finances chemical research projects.

The two professors are:

  • Jacinta Conrad, the Frank M. Tiller Professor in the Chemical and Biomolecular Engineering Department at the University of Houston. Conrad will use her grant to investigate glass transition, a temperature change that affects polymers. She describes glass transition as one of the “most intriguing open problems in physical chemistry.”
  • James Shee, assistant professor in the Chemistry Department at Rice University. Shee will put his grant toward advancing theoretical chemistry.

Every year, the foundation provides annual grants totaling at least $100,000 to support chemistry research being carried out by full-time faculty members at colleges, universities, and other educational institutions in Texas.

In all, the Welch Foundation on June 4 announced more than $40.5 million in academic research grants, equipment grants, and fellowships.

Part of the announced funding will go toward the foundation’s new Postdoctoral Fellows Grant Program. The program provides three-year fellowships to recent PhD graduates to support clinical research careers in Texas. A total of $900,000 in postdoctoral fellowships were funded at Rice University, Texas A&M University, and the University of Texas at Austin.

Since 1954, the Welch Foundation has contributed over $1.1 billion for Texas-nurtured advancements in chemistry through research grants, endowed chairs, and other chemistry-related ventures.

“Ongoing basic chemical research is critically important for helping to solve current and future problems,” said Adam Kuspa, President of the Welch Foundation. “We strongly believe the foundation’s continued support of the research grant program, combined with … new programs, will yield even more exciting developments as we work to advance chemistry and improve our lives.”

With this new grant, UH has a new center for researching bioactive materials crystallization. Photo via UH.edu

Houston innovator receives $5M to establish new center that explores crystallization process

crystal clear initiative

A new hub at the University of Houston is being established with a crystal-clear mission — and fresh funding.

Thanks to funding from Houston-based organization The Welch Foundation, the University of Houston will be home to the Welch Center for Advanced Bioactive Materials Crystallization. The nonprofit doled out its inaugural $5 million Catalyst for Discovery Program Grant to the new initiative led by Jeffrey Rimer, Abraham E. Dukler Professor of Chemical Engineering, who is known internationally for his work with crystals that help treat malaria and kidney stones.

“Knowledge gaps in the nascent and rapidly developing field of nonclassical crystallization present a wide range of obstacles to design crystalline materials for applications that benefit humankind, spanning from medicine to energy and the environment,” says Rimer in a news release. “Success calls for a paradigm shift in the understanding of crystal nucleation mechanisms and structure selection that will be addressed in this center.”

The Welch Foundation, which was founded in 1954, has granted over $1.1 billion to scientists in Texas. This new grant program targets researchers focused on fundamental chemical solutions. Earlier this year, the organization announced nearly $28 million in grants to Texas institutions.

"Support from the Welch Foundation has led to important advances in the field of chemistry, not only within Texas, but also throughout the United States and the world as a whole,” says Randall Lee, Cullen Distinguished University Chair and professor of chemistry, in the release. “These advances extend beyond scientific discoveries and into the realm of education, where support from the Welch Foundation has played a significant role in building the technological workforce needed to solve ongoing and emerging problems in energy and health care.”

Rimer and Lee are joined by the following researchers on the newly announced center's team:

  • Peter Vekilov, Moores Professor, chemical and biomolecular engineering
  • Alamgir Karim, Dow Chair and Welch Foundation Professor, chemical and biomolecular engineering;
  • Jeremy Palmer, Ernest J. and Barbara M. Henley Associate Professor, chemical and biomolecular engineering
  • Gül Zerze, chemical and biomolecular engineering
  • Francisco Robles Hernandez, professor of engineering technology.

The University of Houston also received another grant from the Welch Foundation. Megan Robertson, UH professor of chemical engineering, received $4 million for her work with developing chemical processes to transform plastic waste into useful materials.

“For the University of Houston to be recognized with two highly-competitive Welch Foundation Catalyst Grants underscores the exceptional talent and dedication of our researchers and their commitment to making meaningful contributions to society through discovery,” Diane Chase, UH senior vice president for academic affairs and provost, says in the release.

The Welch Foundation, a Houston-based nonprofit, has doled out fresh funding to research organizations, with over a third being deployed to Houston-area institutions. Photo via Getty Images

Houston organization announces nearly $28M in Texas research grant funding

money moves

Five schools in the Houston area have landed $10.8 million in research grants from the Houston-based Welch Foundation.

The 36 grants were awarded to Rice University, Texas A&M University, the University of Houston, the Baylor College of Medicine, and the University of Texas Medical Branch in Galveston.

In all, the foundation announced nearly $28 million in Texas research grants for 2023. All of the money — in the form of 91 grants for 15 Texas colleges and universities — goes toward chemical research. This year’s total for grant funding matches last year’s total.

“The Welch Foundation continues to emphasize the creative pursuit of basic chemical research,” Adam Kuspa, the foundation’s president and a former dean at the Baylor College of Medicine, says in a news release. “Our funding allows investigators throughout the state to follow their curiosity and explore the foundations chemical processes.”

Since its establishment in 1954, the Welch Foundation has contributed about $1.1 billion to the advancement of chemistry in Texas.

One of this year’s local grant recipients is Haotian Wang, assistant professor in Rice’s chemical and biomolecular department. The professor’s grant-funded research will focus on the conversion of carbon dioxide into useful chemicals, such as ethanol.

Last year, Rice reported that Wang’s lab in the George R. Brown School of Engineering had replaced rare, expensive iridium with ruthenium, a more abundant precious metal, as the positive-electrode catalyst in a reactor that splits water into hydrogen and oxygen.

The lab’s addition of nickel to ruthenium dioxide resulted in production of hydrogen from water electrolysis for thousands of hours.

“There’s huge industry interest in clean hydrogen,” Wang says. “It’s an important energy carrier and also important for chemical fabrication, but its current production contributes a significant portion of carbon emissions in the chemical manufacturing sector globally.”

“We want to produce it in a more sustainable way,” he adds, “and water-splitting using clean electricity is widely recognized as the most promising option.”

Lane Martin will lead the Rice Advanced Materials Institute beginning this summer. Photo courtesy of Rice

Rice University announces leader of new materials and nanotechnology institute

at the helm

A recently established institute at Rice University has revealed its new leader.

The Rice Advanced Materials Institute has named Lane Martin as director. Martin will also serve as Welch Professor of Materials Science and NanoEngineering in the George R. Brown School of Engineering. He begins both roles on July 1.

“Lane is everything we expect our faculty to be — hard-working, committed to excellence, dedicated to students and collaborative across disciplines,” says Howard R. Hughes Provost Amy Dittmar in a news release. “I look forward to seeing Rice faculty and students reap the benefits of his leadership.”

Prior to his appointment at Rice, Martin was the chancellor’s professor of materials science and engineering at the University of California, Berkeley. He also served as chair of the materials science and engineering department, faculty scientist in the material sciences division of the Lawrence Berkeley National Laboratory, and co-director of the Collaborative for Hierarchical Agile and Responsive Materials, according to the release.

“I had the privilege of mentoring Lane when he was a doctoral student at Berkeley,” says Ramamoorthy Ramesh, vice president for research, professor of materials science and nanoengineering and professor of physics and astronomy. “He is a gifted scientist with the boldness and vision to build this new institute into a research powerhouse.”

The new institute was created following a $100 million gift from Houston-based Welch Foundation. It will bring together chemistry, materials science, machine learning, and artificial intelligence to revolutionize the future of industry.

“This institute will keep Rice at the forefront of high-impact research related to energy transition, advanced materials and future computing,” says Luay Nakhleh, the William and Stephanie Sick Dean of the school, in the release. “It will empower our faculty and students to help solve some of the most pressing problems of our day.”

Houston-based Welch Foundation has awarded almost $28 million in chemical research grants throughout Texas this year. Photo via Getty Images

Houston research organization doles out $28M in grants to innovators across Texas

funding for the future

Chemical researchers at seven institutions in the Houston area are receiving nearly $12.9 million grants from the Houston-based Welch Foundation.

In the Houston area, 43 grants are going to seven institutions:

  • Baylor College of Medicine
  • Rice University
  • Texas A&M University
  • Texas A&M University Health Science Center
  • University of Houston
  • University of Texas Health Science Center at Houston
  • University of Texas Medical Branch in Galveston

The Welch Foundation is awarding almost $28 million in chemical research grants throughout Texas this year. The money will be allocated over a three-year period.

“Today, chemical research is more important than ever for improving the human condition and for meeting the global challenges that threaten our collective future,” says Adam Kuspa, president of the Welch Foundation. “Basic research in chemistry and related fields provides the foundation for groundbreaking scientific discoveries that can help solve current problems and sustain progress.”

Two of the 2022 grant recipients cited by the foundation are:

  • Josephine Chu Ferreon, assistant professor of pharmacology and chemical Biology at the Baylor College of Medicine. She plans to use her Welch grant to conduct research on intrinsically disordered proteins (IDPs) and their potential applications in biotech and nanomedicine. IDPs, known as “dancing proteins,” do not form uniquely defined 3D structures. Because of the structural flexibility, IDPs can pair with ordered proteins to perform functions that structured proteins can’t do on their own.
  • David Powers, assistant professor of chemistry at Texas A&M. He leads a research group focused on the relationship between organic and inorganic chemistry. Members of the group are trying to develop new methods for the sustainable synthesis of functional molecules.

Since its establishment in 1954, the Welch Foundation has contributed more than $1.1 billion to the advancement of chemistry in Texas. Last year, the organization granted $23 million in funds.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Rice, Houston Methodist developing soft 'sleep cap' for brain health research

Researchers and scientists at Rice University and Houston Methodist are developing a “sleep cap” that aims to protect the brain against dementia and other similar diseases by measuring and improving deep sleep.

The project is a collaboration between Rice University engineering professors Daniel Preston, Vanessa Sanchez and Behnaam Aazhang; and Houston Methodist neurologist Dr. Timea Hodics and Dr. Gavin Britz, director of the Houston Methodist Neurological Institute and chairman of the Department of Neurosurgery.

According to Rice, deep sleep is essential for clearing waste products from the brain and nightly “cleaning cycles” help remove toxic proteins. These toxic proteins, like amyloids, can accumulate during the day and are linked to Alzheimer’s disease and other neurological issues.

Aazhang, director of the Rice Neuroengineering Initiative, and his team are building a system that not only tracks the brain’s clearing process but can also stimulate it, improving natural mechanisms that protect against neurodegeneration.

Earlier proof-of-concept versions of the caps successfully demonstrated the promise of this approach; however, they were rigid and uncomfortable for sleep.

Preston and Sanchez will work to transform the design of the cap into a soft, lightweight, textile-based version to make sleep easier, while also allowing the caps to be customizable and tailored for each patient.

“One of the areas of expertise we have here at Rice is designing wearable devices from soft and flexible materials,” Preston, an assistant professor of mechanical engineering, said in a news release. “We’ve already shown this concept works in rigid device prototypes. Now we’re building a soft, breathable cap that people can comfortably wear while they sleep.”

Additionally, the research team is pursuing ways to adapt their technology to measure neuroinflammation and stimulate the brain’s natural plasticity. Neuroinflammation, or swelling in the brain, can be caused by injury, stroke, disease or lifestyle factors and is increasingly recognized as a driver of neurodegeneration, according to Rice.

“Our brain has an incredible ability to rewire itself,” Aazhang added in the release. “If we can harness that through technology, we can open new doors for treating not just dementia but also traumatic brain injury, stroke, Parkinson’s disease and more.”

The project represents Rice’s broader commitment to brain health research and its support for the Dementia Prevention Research Institute of Texas (DPRIT), which passed voter approval last week. The university also recently launched its Rice Brain Institute.

As part of the project, Houston Methodist will provide access to clinicians and patients for early trials, which include studies on patients who have suffered traumatic brain injury and stroke.

“We have entered an era in neuroscience that will result in transformational cures in diseases of the brain and spinal cord,” Britz said in the release. “DPRIT could make Texas the hub of these discoveries.”

Autonomous truck company with Houston routes goes public

on a roll

Kodiak Robotics, a provider of AI-powered autonomous vehicle technology, has gone public through a SPAC merger and has rebranded as Kodiak AI. The company operates trucking routes to and from Houston, which has served as a launchpad for the business.

Privately held Kodiak, founded in 2018, merged with a special purpose acquisition company — publicly held Ares Acquisition Corp. II — to form Kodiak AI, whose stock now trades on the Nasdaq market.

In September, Mountain View, California-based Kodiak and New York City-based Ares disclosed a $145 million PIPE (private investment in public equity) investment from institutional investors to support the business combo. Since announcing the SPAC deal, more than $220 million has been raised for the new Kodiak.

“We believe these additional investments underscore our investors’ confidence in the value proposition of Kodiak’s safe and commercially deployed autonomous technology,” Don Burnette, founder and CEO of Kodiak, said in a news release.

“We look forward to leading the advancement of the commercial trucking and public sector industries,” he added, “and delivering on the exciting value creation opportunities ahead to the benefit of customers and shareholders.”

Last December, Kodiak debuted a facility near George Bush Intercontinental/Houston Airport for loading and loading driverless trucks. Transportation and logistics company Ryder operates the “truckport” for Ryder.

The facility serves freight routes to and from Houston, Dallas and Oklahoma City. Kodiak’s trucks currently operate with or without drivers. Kodiak’s inaugural route launched in 2024 between Houston and Dallas.

One of the companies using Kodiak’s technology is Austin-based Atlas Energy Solutions, which owns and operates four driverless trucks equipped with Kodiak’s driver-as-a-service technology. The trucks pick up fracking sand from Atlas’ Dune Express, a 42-mile conveyor system that carries sand from Atlas’ mine to sites near customers’ oil wells in the Permian Basin.

Altogether, Atlas has ordered 100 trucks that will run on Kodiak’s autonomous technology in an effort to automate Atlas’ supply chain.

Rice University scientists invent new algorithm to fight Alzheimer's

A Seismic Breakthrough

A new breakthrough from researchers at Rice University could unlock the genetic components that determine several human diseases such as Parkinson's and Alzheimer's.

Alzheimer's disease affected 57 million people worldwide in 2021, and cases in the United States are expected to double in the next couple of decades. Despite its prevalence and widespread attention of the condition, the full mechanisms are still poorly understood. One hurdle has been identifying which brain cells are linked to the disease.

For years, it was thought that the cells most linked with Alzheimer's pathology via DNA evidence were microglia, infection-fighting cells in the brain. However, this did not match with actual studies of Alzheimer's patients' brains. It's the memory-making cells in the human brain that are implicated in the pathology.

To prove this link, researchers at Rice, alongside Boston University, developed a computational algorithm called “Single-cell Expression Integration System for Mapping Genetically Implicated Cell Types," or SEISMIC. It allows researchers to zero in on specific neurons linked to Alzheimer's, the first of its kind. Qiliang Lai, a Rice doctoral student and the lead author of a paper on the discovery published in Nature Communications, believes that this is an important step in the fight against Alzheimer's.

“As we age, some brain cells naturally slow down, but in dementia — a memory-loss disease — specific brain cells actually die and can’t be replaced,” said Lai. “The fact that it is memory-making brain cells dying and not infection-fighting brain cells raises this confusing puzzle where DNA evidence and brain evidence don’t match up.”

Studying Alzheimer's has been hampered by the limitations of computational analysis. Genome-wide association studies (GWAS) and single-cell RNA sequencing (scRNA-seq) map small differences in the DNA of Alzheimer's patients. The genetic signal in these studies would often over-emphasize the presence of infection fighting cells, essentially making the activity of those cells too "loud" statistically to identify other factors. Combined with greater specificity in brain regional activity, SEISMIC reduces the data chatter to grant a clearer picture of the genetic component of Alzheimer's.

“We built our SEISMIC algorithm to analyze genetic information and match it precisely to specific types of brain cells,” Lai said. “This enables us to create a more detailed picture of which cell types are affected by which genetic programs.”

Though the algorithm is not in and of itself likely to lead to a cure or treatment for Alzheimer's any time soon, the researchers say that SEISMIC is already performing significantly better than existing tools at identifying important disease-relevant cellular signals more clearly.

“We think this work could help reconcile some contradicting patterns in the data pertaining to Alzheimer’s research,” said Vicky Yao, assistant professor of computer science and a member of the Ken Kennedy Institute at Rice. “Beyond that, the method will likely be broadly valuable to help us better understand which cell types are relevant in different complex diseases.”

---

This article originally appeared on CultureMap.com.