A University of Houston researcher has reported a 98.7-percent rate of accuracy for a method pioneered by his lab to identify cancers at their earliest stages. Photo via Getty Images

Could detecting cancer one day be as easy as taking a blood test? Wei-Chuan Shih, a University of Houston researcher and Cullen College of Engineering professor of electrical and computer engineering, has reported a 98.7-percent rate of accuracy for a method pioneered by his lab to identify cancers at their earliest stages.

The technology combines Shih’s own PANORAMA (PlAsmonic NanO-apeRture lAbel-free iMAging) with fluorescent imaging to view nanometer-sized membrane sacs, called extracellular vesicles or EVs. EVs carry different types of cargo, including proteins, nucleic acids and metabolites, throughout the bloodstream.

“We observed differences in small EV numbers and cargo in samples taken from healthy people versus people with cancer and are able to differentiate these two populations based on our analysis of the small EVs,” reports Shih, in Nature Communications Medicine. “The findings came from combining two imaging methods – our previously developed method PANORAMA and imaging of fluorescence emitted by small EVs—to visualize and count small EVs, determine their size and analyze their cargo.”

Shih introduced PANORAMA in 2020. The technology uses a glass side covered with gold nano discs that allows users to monitor changes in the transmission of light as well as determine the characteristics of nanoparticles as small as 25 nanometers in diameter. For the new publication, Shih and his team just had to count the number of small EVs in order to detect cancer.

“Using a cutoff of 70 normalized small EV counts, all cancer samples from 205 patients were above this threshold except for one sample, and for healthy samples, from 106 healthy individuals, all but three were above this cutoff, giving a cancer detection sensitivity of 99.5% and specificity of 97.3%,” says Shih.

The team was able to report 100-percent accuracy with further testing that analyzed two independent sets of samples from stage I-IV or recurrent leiomyosarcoma/gastrointestinal stromal tumors and early-and-late-stage cholangiocarcinoma combined with healthy samples.

Shih and collaborator Steven H. Lin have founded Seek Diagnostics with the goal of commercializing the technology that they’ve innovated. In 2022, the duo joined the Texas Medical Center Innovation's cancer-focused accelerator.


Wei-Chuan Shih is a professor of electrical and computer engineering at the University of Houston's Cullen College of Engineering. Photo via UH.edu

Mark Clarke (left) and Wei-Chuan Shih were named among the National Academy of Inventors' inaugural class of senior members. Courtesy of the University of Houston

2 UH scientists receive prestigious national recognition for fostering innovation

top of the class

Two researchers at the University of Houston have been named to the inaugural class of senior members for the National Academy of Inventors. The new distinction recognizes the honorees for fostering innovation and educating and mentoring future innovators — as well as their contribution to science and technology.

The two UH honorees are Mark Clarke, associate provost for faculty development and faculty affairs, and Wei-Chuan Shih, associate professor of electrical and computer engineering. Both will be recognized at the eighth annual NAI meeting in Houston this April, a release from UH says.

"Dr. Clarke and Dr. Shih both have impressive records of producing impactful intellectual property and spurring innovation that is pertinent to the Houston region," Amr Elnashai, vice president of research and technology at UH, says in the release. "Their further efforts, including helping UH faculty commercialize technologies as well as working with graduate and undergraduate students to boost their entrepreneurial efforts, are a critical contribution to building the region's innovation ecosystem."

NAI named 65 total scientists from 37 universities as senior members. The scientists have been named on over 1,100 patents issued in the United States. Ten other Texas scientists made the inaugural class, representing Texas Tech university, Texas A&M University, Baylor College of Medicine, and University of Texas at Arlington.

The organization also has a fellowship program, in which UH has 12 current fellows.

Clarke has been at UH for over a decade and previously held the position of associate vice chancellor/vice president for technology transfer at the UH Division of Research, where he oversaw a portfolio of 360 technology patents, according to the release. Clarke has 13 patents to his name and previously worked at two startups — both commercialized technologies Clarke developed in his tenure at NASA then UH.

UH's other senior NIA member, Shih, has been granted 11 patents in the US. His NanoBioPhotonics Group has developed a number of sensing and imaging technologies and devices for biomedicine and environmental testing, among other fields. Shih, who has been at the university for over nine years, created a startup with a group of students called DotLens. The company produced and distributed lenses that could be used to convert a smartphone into a microphone.

A few months ago, a Houston scientist received international recognition when he

won the Nobel Prize for the cancer research he did for the University of Texas MD Anderson Cancer center. Jim Allison won for his work in launching an effective new way to attack cancer by treating the immune system rather than the tumor.
Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston robotics co. unveils new robot that can handle extreme temperatures

Hot New Robot

Houston- and Boston-based Square Robot Inc.'s newest tank inspection robot is commercially available and certified to operate at extreme temperatures.

The new robot, known as the SR-3HT, can operate from 14°F to 131°F, representing a broader temperature range than previous models in the company's portfolio. According to the company, its previous temperature range reached 32°F to 104°F.

The new robot has received the NEC/CEC Class I Division 2 (C1D2) certification from FM Approvals, allowing it to operate safely in hazardous locations and to perform on-stream inspections of aboveground storage tanks containing products stored at elevated temperatures.

“Our engineering team developed the SR-3HT in response to significant client demand in both the U.S. and international markets. We frequently encounter higher temperatures due to both elevated process temperatures and high ambient temperatures, especially in the hotter regions of the world, such as the Middle East," David Lamont, CEO of Square Robot, said in a news release. "The SR-3HT employs both active and passive cooling technology, greatly expanding our operating envelope. A great job done (again) by our engineers delivering world-leading technology in record time.”

The company's SR-3 submersible robot and Side Launcher received certifications earlier this year. They became commercially available in 2023, after completing initial milestone testing in partnership with ExxonMobil, according to Square Robot.

The company closed a $13 million series B round in December, which it said it would put toward international expansion in Europe and the Middle East.

Square Robot launched its Houston office in 2019. Its autonomous, submersible robots are used for storage tank inspections and eliminate the need for humans to enter dangerous and toxic environments.

---

This article originally appeared on EnergyCapitalHTX.com.

Houston's Ion District to expand with new research and tech space, The Arc

coming soon

Houston's Ion District is set to expand with the addition of a nearly 200,000-square-foot research and technology facility, The Arc at the Ion District.

Rice Real Estate Company and Lincoln Property Company are expected to break ground on the state-of-the-art facility in Q2 2026 with a completion target set for Q1 2028, according to a news release.

Rice University, the new facility's lead tenant, will occupy almost 30,000 square feet of office and lab space in The Arc, which will share a plaza with the Ion and is intended to "extend the district’s success as a hub for innovative ideas and collaboration." Rice research at The Arc will focus on energy, artificial intelligence, data science, robotics and computational engineering, according to the release.

“The Arc will offer Rice the opportunity to deepen its commitment to fostering world-changing innovation by bringing our leading minds and breakthrough discoveries into direct engagement with Houston’s thriving entrepreneurial ecosystem,” Rice President Reginald DesRoches said in the release. “Working side by side with industry experts and actual end users at the Ion District uniquely positions our faculty and students to form partnerships and collaborations that might not be possible elsewhere.”

Developers of the project are targeting LEED Gold certification by incorporating smart building automation and energy-saving features into The Arc's design. Tenants will have the opportunity to lease flexible floor plans ranging from 28,000 to 31,000 square feet with 15-foot-high ceilings. The property will also feature a gym, an amenity lounge, conference and meeting spaces, outdoor plazas, underground parking and on-site retail and dining.

Preleasing has begun for organizations interested in joining Rice in the building.

“The Arc at the Ion District will be more than a building—it will be a catalyst for the partnerships, innovations and discoveries that will define Houston’s future in science and technology,” Ken Jett, president of Rice Real Estate Company, added in the release. “By expanding our urban innovation ecosystem, The Arc will attract leading organizations and talent to Houston, further strengthening our city’s position as a hub for scientific and entrepreneurial progress.”

Intel Corp. and Rice University sign research access agreement

innovation access

Rice University’s Office of Technology Transfer has signed a subscription agreement with California-based Intel Corp., giving the global company access to Rice’s research portfolio and the opportunity to license select patented innovations.

“By partnering with Intel, we are creating opportunities for our research to make a tangible impact in the technology sector,” Patricia Stepp, assistant vice president for technology transfer, said in a news release.

Intel will pay Rice an annual subscription fee to secure the option to evaluate specified Rice-patented technologies, according to the agreement. If Intel chooses to exercise its option rights, it can obtain a license for each selected technology at a fee.

Rice has been a hub for innovation and technology with initiatives like the Rice Biotech Launch Pad, an accelerator focused on expediting the translation of the university’s health and medical technology; RBL LLC, a biotech venture studio in the Texas Medical Center’s Helix Park dedicated to commercializing lifesaving medical technologies from the Launch Pad; and Rice Nexus, an AI-focused "innovation factory" at the Ion.

The university has also inked partnerships with other tech giants in recent months. Rice's OpenStax, a provider of affordable instructional technologies and one of the world’s largest publishers of open educational resources, partnered with Microsoft this summer. Google Public Sector has also teamed up with Rice to launch the Rice AI Venture Accelerator, or RAVA.

“This agreement exemplifies Rice University’s dedication to fostering innovation and accelerating the commercialization of groundbreaking research,” Stepp added in the news release.