Houston-based BioTex works with medical device and health tech companies from all stages, from R&D to commercialization. Photo via biotexmedical.com

Founding a health tech company is a process unlike any other startup. From the regulatory phase to clinical trials, health tech innovators face a long runway from idea to market, but a Houston-based organization has been working for over 20 years to help make that take-off process run more smoothly.

Ashok Gowda founded BioTex Inc. in 1998, and at the time he was finishing up his PhD at Texas A&M University and wanted a company to support his own health tech ideas, including Visualase Inc. After the real-time tissue monitoring system exited to Medtronic for over $100 million, Gowda realized he can put everything he had learned from taking Visualase from idea to exit and apply it to new medical device innovation.

"Ultimately we built a nice infrastructure by supporting (the Visualase) spin out," Gowda tells InnovationMap. "And we learned a lot about not just product development, but about commercializing and creating a new market that may not exist. And we had some really good, experienced commercial folks we had hired on the Visualase side. I just think it's a good learning lesson that you can't really teach this stuff — you gotta experience it really to understand."

At this point, BioTex has worked with over 40 medical device and health tech companies in some capacity — from early prototyping and research and development to FDA approval, manufacturing, and even distribution. With a staff of around 50 and an 18,000-square-foot facility just south of the Texas Medical Center, BioTex can support around 10 to 15 clients at a time — usually in the medical device sector but across specialties from neurosurgery, cardiology, radiology, urology, gynecology, orthopedics, anesthesia, and more.

BioTex has an 18,000-square-foot facility just south of the Texas Medical Center with R&D space for its clients. Photo via biotexmedical.com

"It's a pretty broad experience, and I think it gives us a good perspective when we talk to a physician or a group of entrepreneurs — we can pretty easily get up to speed or understand the problem because we've usually worked in this space before," Gowda says.

With the infrastructure BioTex has in place, Gowda says he still sees one aspect of health tech development that needs more attention.

"There are obviously a lot of really good ideas here and a lot of push to try to get those ideas to market. But, there are very few of those that have gotten to market and to become commercial products," Gowda says. "It does require a lot of capital to bring medical technology to market — and it usually requires a lot of time as well."

Health tech founders facing the long runway of development usually need enough funds to support them through the process — as well as the know how and support BioTex has.

"We think we solve few of these problems with our in-house expertise, but the one that we are now focused on and trying to solve is the funding gap," Gowda says. "When we see a good idea or a technology, we want to help them get that to market and not let that lack of funding be an impediment."

Ashok Gowda is the president and CEO of BioTex. Photo via biotexmedical.com

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston hospital names leading cancer scientist as new academic head

new hire

Houston Methodist Academic Institute has named cancer clinician and scientist Dr. Jenny Chang as its new executive vice president, president, CEO, and chief academic officer.

Chang was selected following a national search and will succeed Dr. H. Dirk Sostman, who will retire in February after 20 years of leadership. Chang is the director of the Houston Methodist Dr. Mary and Ron Neal Cancer Center and the Emily Herrmann Presidential Distinguished Chair in Cancer Research. She has been with Houston Methodist for 15 years.

Over the last five years, Chang has served as the institute’s chief clinical science officer and is credited with strengthening cancer clinical trials. Her work has focused on therapy-resistant cancer stem cells and their treatment, particularly relating to breast cancer.

Her work has generated more than $35 million in funding for Houston Methodist from organizations like the National Institutes of Health and the National Cancer Institute, according to the health care system. In 2021, Dr. Mary Neal and her husband Ron Neal, whom the cancer center is now named after, donated $25 million to support her and her team’s research on advanced cancer therapy.

In her new role, Chang will work to expand clinical and translational research and education across Houston Methodist in digital health, robotics and bioengineered therapeutics.

“Dr. Chang’s dedication to Houston Methodist is unparalleled,” Dr. Marc L. Boom, Houston Methodist president and CEO, said in a news release. “She is committed to our mission and to helping our patients, and her clinical expertise, research innovation and health care leadership make her the ideal choice for leading our academic mission into an exciting new chapter.”

Chang is a member of the American Association of Cancer Research (AACR) Stand Up to Cancer Scientific Advisory Council. She earned her medical degree from Cambridge University in England and completed fellowship training in medical oncology at the Royal Marsden Hospital/Institute for Cancer Research. She earned her research doctorate from the University of London.

She is also a professor at Weill Cornell Medical School, which is affiliated with the Houston Methodist Academic Institute.

Texas A&M awarded $1.3M federal grant to develop clean energy tech from electronic waste

seeing green

Texas A&M University in College Station has received a nearly $1.3 million federal grant for development of clean energy technology.

The university will use the $1,280,553 grant from the U.S. Department of Energy to develop a cost-effective, sustainable method for extracting rare earth elements from electronic waste.

Rare earth elements (REEs) are a set of 17 metallic elements.

“REEs are essential components of more than 200 products, especially high-tech consumer products, such as cellular telephones, computer hard drives, electric and hybrid vehicles, and flat-screen monitors and televisions,” according to the Eos news website.

REEs also are found in defense equipment and technology such as electronic displays, guidance systems, lasers, and radar and sonar systems, says Eos.

The grant awarded to Texas A&M was among $17 million in DOE grants given to 14 projects that seek to accelerate innovation in the critical materials sector. The federal Energy Act of 2020 defines a critical material — such as aluminum, cobalt, copper, lithium, magnesium, nickel, and platinum — as a substance that faces a high risk of supply chain disruption and “serves an essential function” in the energy sector.

“DOE is helping reduce the nation’s dependence on foreign supply chains through innovative solutions that will tap domestic sources of the critical materials needed for next-generation technologies,” says U.S. Energy Secretary Jennifer Granholm. “These investments — part of our industrial strategy — will keep America’s growing manufacturing industry competitive while delivering economic benefits to communities nationwide.”

------

This article originally appeared on EnergyCapital.

Biosciences startup becomes Texas' first decacorn after latest funding

A Dallas-based biosciences startup whose backers include millionaire investors from Austin and Dallas has reached decacorn status — a valuation of at least $10 billion — after hauling in a series C funding round of $200 million, the company announced this month. Colossal Biosciences is reportedly the first Texas startup to rise to the decacorn level.

Colossal, which specializes in genetic engineering technology designed to bring back or protect various species, received the $200 million from TWG Global, an investment conglomerate led by billionaire investors Mark Walter and Thomas Tull. Walter is part owner of Major League Baseball’s Los Angeles Dodgers, and Tull is part owner of the NFL’s Pittsburgh Steelers.

Among the projects Colossal is tackling is the resurrection of three extinct animals — the dodo bird, Tasmanian tiger and woolly mammoth — through the use of DNA and genomics.

The latest round of funding values Colossal at $10.2 billion. Since launching in 2021, the startup has raised $435 million in venture capital.

In addition to Walter and Tull, Colossal’s investors include prominent video game developer Richard Garriott of Austin and private equity veteran Victor Vescov of Dallas. The two millionaires are known for their exploits as undersea explorers and tourist astronauts.

Aside from Colossal’s ties to Dallas and Austin, the startup has a Houston connection.

The company teamed up with Baylor College of Medicine researcher Paul Ling to develop a vaccine for elephant endotheliotropic herpesvirus (EEHV), the deadliest disease among young elephants. In partnership with the Houston Zoo, Ling’s lab at the Baylor College of Medicine has set up a research program that focuses on diagnosing and treating EEHV, and on coming up with a vaccine to protect elephants against the disease. Ling and the BCMe are members of the North American EEHV Advisory Group.

Colossal operates research labs Dallas, Boston and Melbourne, Australia.

“Colossal is the leading company working at the intersection of AI, computational biology, and genetic engineering for both de-extinction and species preservation,” Walter, CEO of TWG Globa, said in a news release. “Colossal has assembled a world-class team that has already driven, in a short period of time, significant technology innovations and impact in advancing conservation, which is a core value of TWG Global.”

Well-known genetics researcher George Church, co-founder of Colossal, calls the startup “a revolutionary genetics company making science fiction into science fact.”

“We are creating the technology to build de-extinction science and scale conservation biology,” he added, “particularly for endangered and at-risk species.”