This week's Houston innovators to know includes Sola Lawal of Nuro, Jose Diaz-Gomez of CHI St. Luke's Health, and Kimberly Baker of UT School of Public Health. Courtesy photos

Editor's note: A key attribute of innovators and inventors is the ability to look forward — to see the need for their innovation and the difference it will make. Each of this week's innovators to know have that skill, whether it's predicting the rise of autonomous vehicles or seeing the future of health care.

Sola Lawal, product operations manager at Nuro

Autonomous vehicle delivery service is driving access to food in Houston’s vulnerable communities

Native Houstonian Sola Lawal is looking into how AI and robotics can help increase access to fresh foods in local food deserts. Photo courtesy of Nuro

Sola Lawal has always found himself back in his hometown of Houston. Now working for artificial intelligence and robotics company, Nuro, he sees the potential Houston has to become a major market for autonomous vehicles.

"I think that autonomous vehicles are going to become an industry in the same way your standard vehicles are," Lawal says."One really strong way the Houston ecosystem and Nuro can partner is essentially building out the ancillary."

Lawal shared more on how Houston and Nuro can work together on this week's episode of the Houston innovators podcast. Read more and stream the episode.

Jose Diaz-Gomez, an anesthesiologist at CHI St. Luke's Health

CHI St. Luke's Health has invested in around 40 of the Butterfly iQ devices that can be used to provide accurate and portable ultrasonography on COVID-19 patients. Photo courtesy of CHI St. Luke's

A new, portable ultrasound device has equipped Jose Diaz-Gomez and his team with a reliable, easy-to-use tool for diagnostics and tracking progress of COVID-19 patients. And this tool will continue to help Diaz-Gomez lead his team of physicians.

"Whatever we will face after the pandemic, many physicians will be able to predict more objectively when a patient is deteriorating from acute respiratory failure," he says. "Without this innovation, we wouldn't have been able to be at higher standards with ultrasonography." Read more.

Kimberly A. Baker, assistant professor at UTHealth School of Public Health

UTHealth School of Public Health launched its Own Every Piece campaign to promote women's health access and education. Photo courtesy of Own Every Piece

It was unnerving to Kimberly Baker that proper sex education wasn't in the curriculum of Texas schools, and women were left without resources for contraceptives. So, along with UTHealth School of Public Health, she launched its Own Every Piece campaign as a way to empower women with information on birth control and ensure access to contraceptive care regardless of age, race, relationship status or socioeconomic status.

"You feel like the campaign is talking to you as a friend, not talking down to you as an authority or in any type of shaming way," says Kimberly A. Baker, assistant professor at UTHealth School of Public Health. One of her favorite areas of the website is the "Find a Clinic" page, connecting teens and adult women to nearby clinics, because "one of the biggest complaints from women is that they didn't know where to go," says Baker. Continue reading.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

MD Anderson makes AI partnership to advance precision oncology

AI Oncology

Few experts will disagree that data-driven medicine is one of the most certain ways forward for our health. However, actually adopting it comes at a steep curve. But what if using the technology were democratized?

This is the question that SOPHiA GENETICS has been seeking to answer since 2011 with its universal AI platform, SOPHiA DDM. The cloud-native system analyzes and interprets complex health care data across technologies and institutions, allowing hospitals and clinicians to gain clinically actionable insights faster and at scale.

The University of Texas MD Anderson Cancer Center has just announced its official collaboration with SOPHiA GENETICS to accelerate breakthroughs in precision oncology. Together, they are developing a novel sequencing oncology test, as well as creating several programs targeted at the research and development of additional technology.

That technology will allow the hospital to develop new ways to chart the growth and changes of tumors in real time, pick the best clinical trials and medications for patients and make genomic testing more reliable. Shashikant Kulkarni, deputy division head for Molecular Pathology, and Dr. J. Bryan, assistant professor, will lead the collaboration on MD Anderson’s end.

“Cancer research has evolved rapidly, and we have more health data available than ever before. Our collaboration with SOPHiA GENETICS reflects how our lab is evolving and integrating advanced analytics and AI to better interpret complex molecular information,” Dr. Donna Hansel, division head of Pathology and Laboratory Medicine at MD Anderson, said in a press release. “This collaboration will expand our ability to translate high-dimensional data into insights that can meaningfully advance research and precision oncology.”

SOPHiA GENETICS is based in Switzerland and France, and has its U.S. offices in Boston.

“This collaboration with MD Anderson amplifies our shared ambition to push the boundaries of what is possible in cancer research,” Dr. Philippe Menu, chief product officer and chief medical officer at SOPHiA GENETICS, added in the release. “With SOPHiA DDM as a unifying analytical layer, we are enabling new discoveries, accelerating breakthroughs in precision oncology and, most importantly, enabling patients around the globe to benefit from these innovations by bringing leading technologies to all geographies quickly and at scale.”

Houston company plans lunar mission to test clean energy resource

lunar power

Houston-based natural resource and lunar development company Black Moon Energy Corporation (BMEC) announced that it is planning a robotic mission to the surface of the moon within the next five years.

The company has engaged NASA’s Jet Propulsion Laboratory (JPL) and Caltech to carry out the mission’s robotic systems, scientific instrumentation, data acquisition and mission operations. Black Moon will lead mission management, resource-assessment strategy and large-scale operations planning.

The goal of the year-long expedition will be to gather data and perform operations to determine the feasibility of a lunar Helium-3 supply chain. Helium-3 is abundant on the surface of the moon, but extremely rare on Earth. BMEC believes it could be a solution to the world's accelerating energy challenges.

Helium-3 fusion releases 4 million times more energy than the combustion of fossil fuels and four times more energy than traditional nuclear fission in a “clean” manner with no primary radioactive products or environmental issues, according to BMEC. Additionally, the company estimates that there is enough lunar Helium-3 to power humanity for thousands of years.

"By combining Black Moon's expertise in resource development with JPL and Caltech's renowned scientific and engineering capabilities, we are building the knowledge base required to power a new era of clean, abundant, and affordable energy for the entire planet," David Warden, CEO of BMEC, said in a news release.

The company says that information gathered from the planned lunar mission will support potential applications in fusion power generation, national security systems, quantum computing, radiation detection, medical imaging and cryogenic technologies.

Black Moon Energy was founded in 2022 by David Warden, Leroy Chiao, Peter Jones and Dan Warden. Chiao served as a NASA astronaut for 15 years. The other founders have held positions at Rice University, Schlumberger, BP and other major energy space organizations.

Houston co. makes breakthrough in clean carbon fiber manufacturing

Future of Fiber

Houston-based Mars Materials has made a breakthrough in turning stored carbon dioxide into everyday products.

In partnership with the Textile Innovation Engine of North Carolina and North Carolina State University, Mars Materials turned its CO2-derived product into a high-quality raw material for producing carbon fiber, according to a news release. According to the company, the product works "exactly like" the traditional chemical used to create carbon fiber that is derived from oil and coal.

Testing showed the end product met the high standards required for high-performance carbon fiber. Carbon fiber finds its way into aircraft, missile components, drones, racecars, golf clubs, snowboards, bridges, X-ray equipment, prosthetics, wind turbine blades and more.

The successful test “keeps a promise we made to our investors and the industry,” Aaron Fitzgerald, co-founder and CEO of Mars Materials, said in the release. “We proved we can make carbon fiber from the air without losing any quality.”

“Just as we did with our water-soluble polymers, getting it right on the first try allows us to move faster,” Fitzgerald adds. “We can now focus on scaling up production to accelerate bringing manufacturing of this critical material back to the U.S.”

Mars Materials, founded in 2019, converts captured carbon into resources, such as carbon fiber and wastewater treatment chemicals. Investors include Untapped Capital, Prithvi Ventures, Climate Capital Collective, Overlap Holdings, BlackTech Capital, Jonathan Azoff, Nate Salpeter and Brian Andrés Helmick.

---

This article originally appeared on our sister site, EnergyCapitalHTX.com.