The new Solugen facility is expected to reduce annual carbon emissions by up to 18 million kilograms. Photo courtesy of Solugen

Houston-based Solugen has secured financing from the U.S. Department of Energy's Loan Programs Office to support its mission of producing clean chemicals.

The LPO's $213.6 million loan guarantee will go toward the construction of the company's 500,000-square-foot Bioforge Marshall facility in Southwest Minnesota, which broke ground in April and will produce bio-based chemical products to be used in wastewater treatment, construction, agriculture, and the energy sector. According to Solugen, the facility is expected to reduce annual carbon emissions by up to 18 million kilograms.

"American manufacturing is at a turning point, and we are proud to have the opportunity to work with the DOE in bringing critical chemical production capabilities onshore to communities like Marshall," Gaurab Chakrabarti, CEO of Solugen, says in a news release. "By scaling cutting-edge technologies, we are meeting domestic demand for innovative solutions and setting global standards for sustainable biomanufacturing."

The new facility, originally announced last year, is expected to go online in the fall of 2025 and will create up to 100 temporary construction jobs as well as 56 full-time manufacturing jobs once the facility is up and running.

"Today’s announcement reflects President Biden’s commitment to building a thriving bioeconomy that benefits all Americans and ensures the United States leads the world in emerging biomass industries," the DOE writes in its announcement.

Bioforge Marshall is a scaled-up version of the company's first project, Bioforge Houston, which has been operating since 2021 and will continue to act as Solugen's research and development and innovation center.

"Scaling our Bioforge platform is not only a technological advancement, but a strategic move to fortify the domestic supply chain for critical chemicals," adds Sean Hunt, CTO of Solugen. "This project will serve as a model for how innovative technologies can revive American industries and maintain our competitive edge on a global scale."

Solugen will be required to meet certain DOE standards to move forward with the financing. Additionally, the company has created partnerships with regional educational and workforce development organizations for training and recruiting.

Founded in 2016, the Houston company has raised over $600 million, per Crunchbase, and clinched unicorn status with a $1 billion valuation in 2021. Last month, Solugen ranked at No. 36 on CNBC’s annual Disruptor 50 list, and in 2023, Chakrabarti and Hunt were named winners at the EY Entrepreneur of the Year awards.

The study will look at improving sustainability within George Bush Intercontinental Airport in Houston. Photo courtesy of Airbus

Houston organizations launch study to explore hydrogen-powered travel

sustainability takes flight

A few major players have teamed up to look into making air travel more sustainable — and it's all happening in Houston.

The Center for Houston’s Future, Airbus, and Houston Airports have signed a memorandum of understanding intended to study the “feasibility of a hydrogen hub at George Bush Intercontinental Airport." The study, which will conclude in March of 2025, will include the participants that will collaborate ways to rethink how their infrastructures could be designed and operated to reduce an overall environmental footprint, and lead to hydrogen-powered aircrafts like the ones Airbus plans to bring to fruition by 2035.

In 2020, Airbus debuted its ZEROe hydrogen-powered aircraft project. The “Hydrogen Hub at Airports'' concept by Airbus unites key airport ecosystem players to develop ways to decarbonize all airport-associated infrastructure with hydrogen. The study will include airport ground transportation, airport heating, end-use in aviation, and possibly ways to supply adjacent customers in transport and local industries.

The use of hydrogen to power future aircraft aims to assist in eliminating aircraft CO2 emissions in the air, and also can help decarbonize air transport on the ground. With Houston being such a large city, and a destination for some many visiting on business, the Houston airports was an easy spot to assign the study.

"Houston’s airports are experiencing tremendous growth, connecting our city to the world like never before,” Jim Szczesniak, the aviation director for the city of Houston, says in a news release. “As we continue to expand and modernize our facilities, participating in this sustainability study is crucial. Continuing to build a sustainable airport system will ensure a healthy future for Houston, attract top talent and businesses, and demonstrate our commitment to being a responsible global citizen.

"This study will provide us with valuable insights to guide our development and position Houston as a global leader in sustainable aviation innovation for generations to come.”

The CHF was a founding organizer of the HyVelocity Hydrogen Hub, which was selected by the U.S. Department of Energy as one of seven hydrogen hubs in the nation, and will work in the Houston area and the Gulf Coast. The HyVelocity Hydrogen Hub is eligible to receive up to $1.2 billion as part of a Bipartisan Infrastructure Law funding to advance domestic hydrogen production.

“The Center for Houston’s Future is pleased to have played a crucial role in bringing together the partners for this study,” Brett Perlman, the center's outgoing CEO and president, adds. “With Houston’s role as the world’s energy capital, our record of energy innovation and desire to lead in the business of low-carbon energy, Houston is the perfect place to develop our airports as North American clean hydrogen pioneers.”

The GHP and HETI announced that it has signed a memorandum of understanding with Argonne National Laboratory, a a federally-funded research and development facility in Illinois. Photo by Natalie Harms/InnovationMap

Houston organization announces major partnership with DOE lab to spur energy innovation commercialization

R&D teammate

A new partnership between the Greater Houston Partnership and Argonne National Laboratory has been established to spur development of commercial-scale energy transition solutions.

The GHP and the Houston Energy Transition Initiative, or HETI, announced that it has signed a memorandum of understanding with Argonne National Laboratory, a federally-funded research and development facility in Illinois. The lab is owned by the United States Department of Energy and run by UChicago Argonne LLC of the University of Chicago.

“The U.S. Department of Energy’s national laboratories have long been the backbone of research, development, and demonstration for the energy sector," Bobby Tudor, CEO of Artemis Energy Partners and Chair of HETI, says in a news release. "The Partnership and HETI, working with our industry members, business community and top research and academic institutions, in collaboration with Argonne, will work across our energy innovation ecosystem to drive this critical effort for our region.”

The partnership, announced at HETI House at CERAWeek by S&P Global, is intended to provide resources and collaboration opportunities between Houston's energy innovation ecosystem — from corporates to startups — to "accelerate the translation, evaluation and pre-commercialization of breakthrough carbon reduction technologies," per the news release.

“A decarbonization center of excellence in Houston is the missing link in the region’s coordinated approach to advancing critical energy transition technologies needed to mitigate the risks associated with climate change, while also promoting economic growth and job creation for the region,” Tudor continues.

Established in 1946, Argonne works with universities, industry, and other national laboratories on large, collaborative projects that are expected to make a big impact on the energy transition.

“Partnerships are essential to realizing net zero goals,” Argonne Director Paul Kearns adds. “We are pleased to extend DOE national laboratory expertise and work with HETI to focus the region’s considerable energy and industrial assets, infrastructure, and talent on broad commercial deployment of needed technologies.”

------

This article originally ran on EnergyCapital.

The projects are among 16 other early-stage research projects at U.S. colleges and universities to receive a total of $17.4 million from the DOE's Office of Fossil Energy and Carbon Management. Photo courtesy of University of Houston

3 UH projects land $17.4M in DOE funding for early-stage research

follow the money

Three projects from the University of Houston have been awarded funds from the U.S. Department of Energy for research on decarbonization and emissions.

The projects are among 16 other early-stage research projects at U.S. colleges and universities to receive a total of $17.4 million from the DOE's Office of Fossil Energy and Carbon Management (FECM).

“These three projects show the relevance and quality of the research at UH and our commitment to making a meaningful impact by addressing society’s needs and challenges by doing critical work that impacts the real world,” Ramanan Krishnamoorti, vice president for energy and innovation at UH, says in a statement. “The success of these project could attract investment, create jobs, produce clean energy, save costs, reduce carbon emissions, and benefit not only the greater Houston area, but the Gulf Coast and beyond.”

The projects were selected under FECM’s University Training and Research program, which aims to support "research and development opportunities for traditionally underrepresented communities and tap into the innovative and diverse thinking of student researchers," according to an announcement from the DOE.

Here are the projects from UH and their funding amounts:

A Comprehensive Roadmap for Repurposing Offshore Infrastructure for Clean Energy Projects in the Gulf of Mexico, $749,992 — Led by Ram Seetharam, UH Energy program officer, this project looks at ways to prolong the life of platforms, wells and pipelines in the Gulf Coast and will create a plan "covering technical, social, and regulatory aspects, as well as available resources," according to UH.

Houston Hydrogen Transportation Pilot, $750,000— Led by Christine Ehlig-Economides, Hugh Roy and Lillie Cranz Cullen, and managed by Joe Powell, this project will demonstrate the potential for a hydrogen refueling pilot in Houston. The first phase will create a system to optimize hydrogen and the second will create a workforce training network. The project is in collaboration with Prairie View A&M University.

Synergizing Minority-Serving Institution Partnerships for Carbon-Negative Geologic Hydrogen Production, $1.5 million — This project is in collaboration with Stanford Doerr School of Sustainability and Texas Tech. The project will create a visiting scholars program for students from UH and TTU, who will spend one month per year at Stanford for three years. While in the program, students will focus on creating carbon-negative hydrogen from rocks beneath the Earth's surface. Kyung Jae Lee, associate professor in the Department of Petroleum Engineering at UH, is working alongside colleagues at TTU and Stanford on this project.

Other projects in the group come from the University of Texas at El Paso, New Mexico Institute of Mining and Technology, Tennessee State University, North Carolina Agricultural and Technical State University, Duke University and more.

Last year the DOE also awarded $2 million to Harris and Montgomery counties for projects that improve energy efficiency and infrastructure in the region. Click here to read about those projects.

The DOE also granted more than $10 million in funding to four carbon capture projects with ties to Houston last summer.
Kevin Knobloch will lead Greentown Labs as CEO. Photo via LinkedIn

Greentown Labs names new CEO to oversee Houston, Boston incubators

seeing green

The largest climatetech incubator in North America has named an Obama Administration appointee as its next CEO.

Kevin Knobloch, who served as chief of staff of the United States Department of Energy in President Barack Obama’s second term, will be CEO of Greentown Labs, effective September 5. In his role, Knobloch will oversee both Greentown locations in Houston and Somerville, Massachusetts, outside of Boston.

“Kevin has a proven and impressive track record of growing, operationalizing, and leading a dynamic mix of organizations at different stages and in various industries, all of which have aligned with his unwavering commitment to addressing the climate crisis,” Greentown Labs Board Chair Dawn James says in a news release. “On behalf of the entire Board of Directors, I am thrilled to welcome Kevin as our next CEO. We are excited for what is to come under Kevin’s leadership and look forward to the positive impact he will undoubtedly have on our team, our startup community, and the ecosystem at large.”

With 30 years of experience across sectors, Knobloch most recently served as president of Knobloch Energy, an independent advisory and consulting firm. He also served as acting executive director of the National Offshore Wind Research & Development Consortium from June through December 2022. From 2018 to 2020, Knobloch was president of New York OceanGrid LLC, where he led Anbaric’s efforts to develop offshore wind transmission in New York.

“I’m honored and thrilled to have the opportunity to once again pass the leadership baton,” Greentown Co-Founder Jason Hanna says, who has been serving as interim CEO. “Especially so given Kevin’s incredible record of climate leadership. I’m excited for the future of this organization and the impact he can make as Greentown enters the second decade of its climate mission.”

The appointment follows an executive search that began after Greentown's previous CEO Emily Reichert announced she was stepping down in December.

“I’m delighted to be asked by Greentown Labs’ Board of Directors to be the next leader of this highly effective organization—and very excited to get to work,” Knobloch says in a statement. “I’ve long admired the critical role Greentown plays in supporting the growth and impact of early-stage climate and energy transition technology companies, as well as the impressive efforts by former longtime CEO Emily Reichert and the talented Board and staff to build Greentown into a national powerhouse and model for other incubators around the world. The climate crisis demands that we accelerate our collective pace of deployment and I look forward to collaborating with our startups, staff, and partners to support that acceleration.”

The announcement comes on the heels of Greentown naming its inaugural Houston general manager. Timmeko Moore Love was named to that new position last week.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston engineers develop breakthrough device to advance spinal cord treatment

future of health

A team of Rice University engineers has developed an implantable probe over a hundred times smaller than the width of a hair that aims to help develop better treatments for spinal cord disease and injury.

Detailed in a recent study published in Cell Reports, the probe or sensor, known as spinalNET, is used to explore how neurons in the spinal cord process sensation and control movement, according to a statement from Rice. The research was supported by the National Institutes of Health, Rice, the California-based Salk Institute for Biological Studies, and the philanthropic Mary K. Chapman Foundation based in Oklahoma.

The soft and flexible sensor was used to record neuronal activity in freely moving mice with high resolution for multiple days. Historically, tracking this level of activity has been difficult for researchers because the spinal cord and its neurons move so much during normal activity, according to the team.

“We developed a tiny sensor, spinalNET, that records the electrical activity of spinal neurons as the subject performs normal activity without any restraint,” Yu Wu, a research scientist at Rice and lead author of the study said in a statement. “Being able to extract such knowledge is a first but important step to develop cures for millions of people suffering from spinal cord diseases.”

The team says that before now the spinal cord has been considered a "black box." But the device has already helped the team uncover new findings about the body's rhythmic motor patterns, which drive walking, breathing and chewing.

Lan Luan (from left), Yu Wu, and Chong Xie are working on the breakthrough device. Photo by Jeff Fitlow/Rice University

"Some (spinal neurons) are strongly correlated with leg movement, but surprisingly, a lot of neurons have no obvious correlation with movement,” Wu said in the statement. “This indicates that the spinal circuit controlling rhythmic movement is more complicated than we thought.”

The team said they hope to explore these findings further and aim to use the technology for additional medical purposes.

“In addition to scientific insight, we believe that as the technology evolves, it has great potential as a medical device for people with spinal cord neurological disorders and injury,” Lan Luan, an associate professor of electrical and computer engineering at Rice and a corresponding author on the study, added in the statement.

Rice researchers have developed several implantable, minimally invasive devices to address health and mental health issues.

In the spring, the university announced that the United States Department of Defense had awarded a four-year, $7.8 million grant to the Texas Heart Institute and a Rice team led by co-investigator Yaxin Wang to continue to break ground on a novel left ventricular assist device (LVAD) that could be an alternative to current devices that prevent heart transplantation.

That same month, the university shared news that Professor Jacob Robinson had published findings on minimally invasive bioelectronics for treating psychiatric conditions. The 9-millimeter device can deliver precise and programmable stimulation to the brain to help treat depression, obsessive-compulsive disorder and post-traumatic stress disorder.

Houston clean hydrogen startup to pilot tech with O&G co.

stay gold

Gold H2, a Houston-based producer of clean hydrogen, is teaming up with a major U.S.-based oil and gas company as the first step in launching a 12-month series of pilot projects.

The tentative agreement with the unnamed oil and gas company kicks off the availability of the startup’s Black 2 Gold microbial technology. The technology underpins the startup’s biotech process for converting crude oil into proprietary Gold Hydrogen.

The cleantech startup plans to sign up several oil and gas companies for the pilot program. Gold H2 says it’s been in discussions with companies in North America, Latin America, India, Eastern Europe and the Middle East.

The pilot program is aimed at demonstrating how Gold H2’s technology can transform old oil wells into hydrogen-generating assets. Gold H2, a spinout of Houston-based biotech company Cemvita, says the technology is capable of producing hydrogen that’s cheaper and cleaner than ever before.

“This business model will reshape the traditional oil and gas industry landscape by further accelerating the clean energy transition and creating new economic opportunities in areas that were previously dismissed as unviable,” Gold H2 says in a news release.

The start of the Black 2 Gold demonstrations follows the recent hiring of oil and gas industry veteran Prabhdeep Singh Sekhon as CEO.

“With the proliferation of AI, growth of data centers, and a national boom in industrial manufacturing underway, affordable … carbon-free energy is more paramount than ever,” says Rayyan Islam, co-founder and general partner at venture capital firm 8090 Industries, an investor in Gold H2. “We’re investing in Gold H2, as we know they’ll play a pivotal role in unleashing a new dawn for energy abundance in partnership with the oil industry.”

------

This article originally ran on EnergyCapital.

3 Houston innovators to know this week

who's who

Editor's note: Every week, I introduce you to a handful of Houston innovators to know recently making headlines with news of innovative technology, investment activity, and more. This week's batch includes an e-commerce startup founder, an industrial biologist, and a cellular scientist.

Omair Tariq, co-founder and CEO of Cart.com

Omair Tariq of Cart.com joins the Houston Innovators Podcast to share his confidence in Houston as the right place to scale his unicorn. Photo via Cart.com

Houston-based Cart.com, which operates a multichannel commerce platform, has secured $105 million in debt refinancing from investment manager BlackRock.

The debt refinancing follows a recent $25 million series C extension round, bringing Cart.com’s series C total to $85 million. The scaleup’s valuation now stands at $1.2 billion, making it one of the few $1 billion-plus “unicorns” in the Houston area.

Cart.com was co-founded by CEO Omair Tariq in October 2020. Read more.

Nádia Skorupa Parachin, vice president of industrial biotechnology at Cemvita

Nádia Skorupa Parachin joined Cemvita as vice president of industrial biotechnology. Photo courtesy of Cemvita

Houston-based biotech company Cemvita recently tapped two executives to help commercialize its sustainable fuel made from carbon waste.

Nádia Skorupa Parachin came aboard as vice president of industrial biotechnology, and Phil Garcia was promoted to vice president of commercialization.

Parachin most recently oversaw several projects at Boston-based biotech company Ginkjo Bioworks. She previously co-founded Brazilian biotech startup Integra Bioprocessos. Read more.

Han Xiao, associate professor of chemistry at Rice University

The funds were awarded to Han Xiao, a chemist at Rice University.

A Rice University chemist has landed a $2 million grant from the National Institute of Health for his work that aims to reprogram the genetic code and explore the role certain cells play in causing diseases like cancer and neurological disorders.

The funds were awarded to Han Xiao, the Norman Hackerman-Welch Young Investigator, associate professor of chemistry, from the NIH's Maximizing Investigators’ Research Award (MIRA) program, which supports medically focused laboratories. Xiao will use the five-year grant to advance his work on noncanonical amino acids.

“This innovative approach could revolutionize how we understand and control cellular functions,” Xiao said in the statement. Read more.