The four-year agreement will support the team’s ongoing work on removing PFAS from soil. Photo via Rice University

A Rice University chemist James Tour has secured a new $12 million cooperative agreement with the U.S. Army Engineer Research and Development Center on the team’s work to efficiently remove pollutants from soil.

The four-year agreement will support the team’s ongoing work on removing per- and polyfluoroalkyl substances (PFAS) from contaminated soil through its rapid electrothermal mineralization (REM) process, according to a statement from Rice.

Traditionally PFAS have been difficult to remove by conventional methods. However, Tour and the team of researchers have been developing this REM process, which heats contaminated soil to 1,000 C in seconds and converts it into nontoxic calcium fluoride efficiently while also preserving essential soil properties.

“This is a substantial improvement over previous methods, which often suffer from high energy and water consumption, limited efficiency and often require the soil to be removed,” Tour said in the statement.

The funding will help Tour and the team scale the innovative REM process to treat large volumes of soil. The team also plans to use the process to perform urban mining of electronic and industrial waste and further develop a “flash-within-flash” heating technology to synthesize materials in bulk, according to Rice.

“This research advances scientific understanding but also provides practical solutions to critical environmental challenges, promising a cleaner, safer world,” Christopher Griggs, a senior research physical scientist at the ERDC, said in the statement.

Also this month, Tour and his research team published a report in Nature Communications detailing another innovative heating technique that can remove purified active materials from lithium-ion battery waste, which can lead to a cleaner production of electric vehicles, according to Rice.

“With the surge in battery use, particularly in EVs, the need for developing sustainable recycling methods is pressing,” Tour said in a statement.

Similar to the REM process, this technique known as flash Joule heating (FJH) heats waste to 2,500 Kelvin within seconds, which allows for efficient purification through magnetic separation.

This research was also supported by the U.S. Army Corps of Engineers, as well as the Air Force Office of Scientific Research and Rice Academy Fellowship.

Last year, a fellow Rice research team earned a grant related to soil in the energy transition. Mark Torres, an assistant professor of Earth, environmental and planetary sciences; and Evan Ramos, a postdoctoral fellow in the Torres lab; were given a three-year grant from the Department of Energy to investigate the processes that allow soil to store roughly three times as much carbon as organic matter compared to Earth's atmosphere.

By analyzing samples from the East River Watershed, the team aims to understand if "Earth’s natural mechanisms of sequestering carbon to combat climate change," Torres said in a statement.

What's the latest in tech research in Houston? Here are three revolutionary research projects happening right under our noses. Getty Images

3 Houston tech research projects changing health care, blockchain, and beyond

Research roundup

Tons of research happens daily at various Houston institutions — from life-saving medical developments to high tech innovations that will affect the greater business community.

In this Houston research roundup, three research projects from three Houston organizations are set to revolutionize their respective industries.

University of Houston researcher explores potential disruption in blockchain

blockchain

Getty Images

A huge technology question mark within business has been blockchain — how it'll affect the sharing of information and industry as a whole. But, one University of Houston professor and his Texas A&M University colleagues are looking into that potential disruption in a recent paper.

"It's an emerging technology. It's evolving," says Weidong "Larry" Shi, associate professor of computer science at UH, in a UH news release.

Funded by the Borders, Trade, and Immigration Institute, the research has developed into the paper, which was published in the International Journal of Production Research.

A key focus of the research is how blockchain will affect cargo entering the United States, and identifies six pain points within adapting blockchain for cargo management: traceability, dispute resolution, cargo integrity and security, supply chain digitalization, compliance, and trust and stakeholder management, according to the release.

"The wide adoption of blockchain technology in the global SC (supply chain) market is still in its infancy," the article reads. "Industry experts project that on average, it may take about six years for the widespread adoption of blockchain."

Blockchain has the potential to prevent fraud within the global supply chain, among other things.

"The data can't be changed. Everyone (along the supply chain) has a copy. You can add information, but you can't change it," Shi says in the release.

The U.S. Army taps Rice University for network research

Photo by Jeff Fitlow/Rice University

Rice University and the U.S. Army have joined forces for a five-year, $30 million research agreement to modernize the Army — specifically for developing next-generation wireless networks and radio frequency (RF) electronics.

"[The Army Research Laboratory] and Rice will match the right people and capabilities to meet specific challenges, and the cooperative agreement is structured to allow the Army to partner widely across our campus," says Yousif Shamoo, Rice's vice president of research and lead on the ARL partnership, in a recent news release. "One exciting aspect of this partnership is the broader societal benefits. The technologies we're starting with are needed for Army modernization and they could also benefit millions of Americans in communities that still lack high-speed internet."

Without going into too much detail, the two entities are working to advance the Army's existing infrastructure to create networks that can sense attacks and protect themselves by adaption or stealth. The technology has the potential to affect the Army as well as civilians, says Heidi Maupin, the lead ARL contact for the Rice partnership.

"We want to deliver the capability of quickly deploying secure, robust Army communications networks wherever and whenever they're needed," Maupin says in the release. "The technology needed for that will benefit the world by transforming the economics of rural broadband, reducing response times to natural disasters, opening new opportunities for online education and more."

Research out of Baylor College of Medicine advancing information known about vision

Photo via bcm.edu

For humans, seeing is pretty simple — just open your eyes. But the process our eyes go through extremely complex, and scientists have had a hard time recreating the process — until now.

Researchers at Baylor College of Medicine in Houston and the University of Tübingen in Germany have developed a novel computational approach that accelerates the brain's ability to identify optimal stimuli. The complete study by the scientists was published in the journal Nature Neuroscience.

"We want to understand how vision works," says senior author Dr. Andreas Tolias, professor and Brown Foundation Endowed Chair of Neuroscience at Baylor. "We approached this study by developing an artificial neural network that predicts the neural activity produced when an animal looks at images. If we can build such an avatar of the visual system, we can perform essentially unlimited experiments on it. Then we can go back and test in real brains with a method we named 'inception loops."

To track neurons and how they work, the researchers tracked brain activity scanning thousands of images.

"Experimenting with these networks revealed some aspects of vision we didn't expect," says Tolias, founder and director of the Center for Neuroscience and Artificial Intelligence at Baylor, in a release. "For instance, we found that the optimal stimulus for some neurons in the early stages of processing in the neocortex were checkerboards, or sharp corners as opposed to simple edges which is what we would have expected according to the current dogma in the field."

The research is ongoing and will only continue to help dissect how the brain sees and interprets visual elements.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston-area VC funding sunk to 5-year low in Q3 2025, report says

by the numbers

Fundraising for Houston-area startups experienced a summertime slowdown, sinking to a five-year low in the third quarter, according to the latest PitchBook-NVCA Venture Monitor.

The PitchBook-NVCA Venture Monitor shows startups in the Houston metro area attracted $204.4 million in venture capital from June through August. That’s 55 percent below the total for the previous quarter and 51 percent below the total for the third quarter of 2024.

More telling than those figures is that the third-quarter haul dropped to its lowest total for Houston-area startups since the fourth quarter of 2020, when $133.4 million in VC was raised. That was the third full quarter after health officials declared the pandemic in the U.S.

In Q3 2025, AI accounted for nearly 40 percent of VC deal volume in the U.S., Kyle Stanford, director of U.S. venture research at PitchBook, said in the report. And through the first nine months of 2025, AI represented 64 percent of U.S. deal value.

VC deal activity “has been nearly steady, emphasizing a consistent influx of companies, especially at the pre-seed and seed stages,” Stanford said. “Large deals remain the primary driver of market deal value, with almost all of these deals focused on AI.”

Bobby Franklin, president and CEO of NVCA, said that while fundraising hasn’t returned to pre-pandemic highs, deal values are going up in sectors such as AI, manufacturing, robotics and space tech, many of which have already exceeded their investment totals for all of 2024.

Meet 6 of the fastest-growing scaleup companies in Houston right now

meet the finalists

From raising funding rounds to earning FDA acceptance, some of Houston's most innovative companies have reached major milestones this year.

The 2025 Houston Innovation Awards will recognize their progress by bringing back our Scaleup of the Year category for the second year. The award honors an innovative later-stage startup that's recently reached a significant milestone in company growth.

Six breakthrough businesses have been named finalists for the 2025 award. They range from climatetech startups to a biotech company developing new drugs for neurodegenerative diseases and more.

Read more about these businesses and their impressive growth below. Then join us at the Houston Innovation Awards on Nov. 13 at Greentown Labs, when the winner will be unveiled at our live awards ceremony.

Tickets are now on sale for this exclusive event celebrating all things Houston Innovation. Corporate 10-packs, featuring reserved seating and custom branding, and individual tickets are still available. Secure your seats today.

Coya Therapeutics

Clinical-stage biotechnology company Coya Therapeutics (NASDAQ: COYA) has developed COYA-302 that enhances anti-inflammatory T cell function and suppresses harmful immune activity. The drug candidate is being advanced for several neurodegenerative diseases—including ALS, Alzheimer’s, Parkinson’s, and frontotemporal dementia—and has demonstrated promising reductions in neuroinflammation in preclinical and early clinical studies, according to the company.

Coya, founded in 2021, received FDA acceptance for its investigational new drug application for COYA-30 this summer. It closed its IPO in January 2023 for more than $15 million and added $26 million in PIPE funding that same year. Last year, the company secured an additional $15 million in PIPE funding.

Fervo Energy

Houston-based Fervo Energy is working to provide 24/7 carbon-free energy through the development of cost-competitive geothermal power. The company is developing its flagship Cape Station geothermal power project in Utah, which is expected to generate 400 megawatts of clean energy for the grid. The first phase of the project will supply 100 megawatts of power beginning in 2026. The second phase is scheduled to come online by 2028.

The company raised $205.6 million in capital to help finance the project earlier this year and fully contracted the project's capacity with the addition of a major power purchase agreement from Shell. Founded in 2017 by CEO Tim Latimer and CTO Jack Norbeck, Fervo is now a unicorn, meaning its valuation as a private company has surpassed $1 billion. In March, Axios reported Fervo is targeting a $2 billion to $4 billion valuation in an IPO.

Koda Health

Houston-based Koda Health has developed an advance care planning platform (ACP) that allows users to document and share their care preferences, goals and advance directives for health systems. The web-based platform guides patients through values-based decisions with interactive tools and generates state-specific, legally compliant documents that integrate seamlessly with electronic health record systems. The company also added kidney action planning to its suite of services for patients with serious illnesses last year.

Koda Health was founded out of the TMC's Biodesign Fellowship in 2020 by CEO Tatiana Fofanova, chief medical officer Dr. Desh Mohan, and chief technology officer Katelin Cherry. The company raised a $7 million series A earlier this year, and also announced major partnerships and integrations with Epic, Guidehealth, Medical Home Network, Privia Health and others.

Mati Carbon

Houston climatetech company Mati Carbon removes carbon through its Enhanced Rock Weathering (ERW) program that works with agricultural farms in Africa and India. Mati says the farmers it partners with are some of the most vulnerable to the impacts of climate change. The nonprofit won the $50 million grand prize in the XPRIZE Carbon Removal competition, backed by Elon Musk’s charitable organization, The Musk Foundation, earlier this year.

Mati Carbon scaled operations in India, Zambia, and Tanzania this year and has advanced its proprietary measurement, reporting and verification (MRV) platform, known as matiC, enabling seamless field data capture, chain-of-custody and carbon accounting at scale. The company was founded in 2022 by co-directors Shantanu Agarwal and Rwitwika Bhattacharya.

Molecule

Houston-based Molecule Software has developed an energy trading risk management (ETRM) platform that allows companies trading power, oil and gas, biofuels, renewables and more stay ahead as the markets evolve.

The company closed a Series B round earlier this year for an undisclosed amount. Sameer Soleja, founder and CEO of Molecule, said at the time that the funding would allow the company to "double down on product innovation, grow our team, and reach even more markets." The company was founded in 2012 by CEO Sameer Soleja and participated in the Surge Accelerator the same year.

Utility Global

Houston-based Utility Global has developed its proprietary eXERO technology that produces low-cost, clean hydrogen from water and industrial off-gases without requiring grid electricity.

First founded in 2018 by CEO Parker Meeks, the company participated in Greentown Labs and the Rice Alliance for Technology and Entrepreneurship programs. It raised a $55 million funding round earlier this year and launched commercial partnerships with ArcelorMittal Brazil and Hanwha Group in South Korea to deploy its hydrogen solutions at scale.

---

The Houston Innovation Awards program is sponsored by Houston Community College, Houston Powder Coaters, FLIGHT by Yuengling, and more to be announced soon. For sponsorship opportunities, please contact sales@innovationmap.com.

Venus Aerospace picks up investment from Lockheed Martin Ventures

space funding

Venus Aerospace, a Houston-based startup specializing in next-generation rocket engine propulsion, has received funding from Lockheed Martin Ventures, the investment arm of aerospace and defense contractor Lockheed Martin, for an undisclosed amount. The product lineup at Lockheed Martin includes rockets.

The investment follows Venus’ successful high-thrust test flight of its rotating detonation rocket engine (RDRE) in May. Venus says it’s the only company in the world that makes a flight-proven, high-thrust RDRE with a “clear path to scaled production.”

Venus says the Lockheed Martin Ventures investment reflects the potential of Venus’ dual-use technology for defense and commercial uses.

“Venus has proven in flight the most efficient rocket engine technology in history,” Venus co-founder and CEO Sassie Duggleby, a board member of the Texas Space Commission, said in a news release. “With support from Lockheed Martin Ventures, we will advance our capabilities to deliver at scale and deploy the engine that will power the next 50 years of defense, space, and commercial high-speed aviation.”

Chris Moran, executive director and general manager of Lockheed Martin Ventures, said Lockheed Martin has been a longtime supporter of early-stage “transformational” technologies.

“Our investment in Venus Aerospace reflects a conviction that next-generation propulsion will define which nations lead in space and defense for decades to come,” Moran added in the release. “We are committed to helping Venus scale this technology and integrate it into critical systems.”

Since its founding in 2020, Venus has secured more than $106 million in funding. In addition to Lockheed Martin Ventures, investors include Airbus Ventures, America’s Frontier Fund, Trousdale Ventures, and Prime Movers Lab. Supporters of Venus include NASA, the Air Force Research Lab and the Defense Advanced Research Projects Agency (DARPA).